山西省忻州市岢岚县中学2025届高一数学第一学期期末综合测试模拟试题含解析_第1页
山西省忻州市岢岚县中学2025届高一数学第一学期期末综合测试模拟试题含解析_第2页
山西省忻州市岢岚县中学2025届高一数学第一学期期末综合测试模拟试题含解析_第3页
山西省忻州市岢岚县中学2025届高一数学第一学期期末综合测试模拟试题含解析_第4页
山西省忻州市岢岚县中学2025届高一数学第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省忻州市岢岚县中学2025届高一数学第一学期期末综合测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的图像大致为()A. B.C. D.2.某流行病调查中心的疾控人员针对该地区某类只在人与人之间相互传染的疾病,通过现场调查与传染源传播途径有关的蛛丝马迹,根据传播链及相关数据,建立了与传染源相关确诊病例人数与传染源感染后至隔离前时长t(单位:天)的模型:.已知甲传染源感染后至隔离前时长为5天,与之相关确诊病例人数为8;乙传染源感染后至隔离前时长为8天,与之相关确诊病例人数为20.若某传染源感染后至隔离前时长为两周,则与之相关确诊病例人数约为()A.44 B.48C.80 D.1253.已知函数有唯一零点,则()A. B.C. D.14.已知集合,,则()A. B.C. D.5.已知是第三象限角,,则A. B.C. D.6.将函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移个单位,得到的图象对应的解析式是A. B.C. D.7.若,且,则()A. B.C. D.8.已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x-1)<f的x的取值范围是()A. B.C. D.9.设a>0且a≠1,则“函数fx=ax在R上是减函数”是“函数gxA.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件10.若函数在单调递增,则实数a的取值范围为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知圆:,为圆上一点,、、,则的最大值为______.12.设函数,则下列结论①的图象关于直线对称②的图象关于点对称③的图象向左平移个单位,得到一个偶函数的图象④的最小正周期为,且在上为增函数其中正确的序号为________.(填上所有正确结论的序号)13.已知,且,若不等式恒成立,则实数的最大值是__________.14.已知角的终边经过点,则________.15.已知正实数x,y满足,则的最小值为______16.设点A(2,-3),B(-3,-2),直线过P(1,1)且与线段AB相交,则l的斜率k的取值范围是_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)用函数单调性定义证明:函数在区间上是严格增函数;(2)函数在区间上是单调函数吗?为什么?18.如图,动物园要建造一面靠墙的两间相同的矩形熊猫居室,如果可供建造围墙的材料总长是用宽(单位)表示所建造的每间熊猫居室的面积(单位);怎么设计才能使所建造的每间熊猫居室面积最大?并求出每间熊猫居室的最大面积?19.圆内有一点,为过点且倾斜角为的弦.(1)当时,求的长;(2)当弦被点平分时,写出直线的方程.20.已知函数,不等式解集为,设(1)若存在,使不等式成立,求实数的取值范围;(2)若方程有三个不同的实数解,求实数的取值范围21.已知,向量,,记函数,且函数的图象相邻两对称轴间的距离为.(1)求函数的解析式;(2)若关于的方程在上有三个不相等的实数根,求的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】先判断函数为偶函数排除;再根据当时,,排除得到答案.【详解】,偶函数,排除;当时,,排除故选【点睛】本题考查了函数图像的识别,通过函数的奇偶性和特殊函数点可以排除选项快速得到答案.2、D【解析】根据求得,由此求得的值.【详解】依题意得,,,所以.故若某传染源感染后至隔离前时长为两周,则相关确诊病例人数约为125.故选:D3、B【解析】令,转化为有唯一零点,根据偶函数的对称性求解.【详解】因为函数,令,则为偶函数,因为函数有唯一零点,所以有唯一零点,根据偶函数对称性,则,解得,故选:B4、B【解析】直接利用交集运算法则得到答案.【详解】,,则故选:【点睛】本题考查了交集的运算,属于简单题.5、D【解析】利用条件以及同角三角函数的基本关系、以及三角函数在各个象限中的符号,求得sinα的值【详解】∵α是第三象限角,tanα,sin2α+cos2α=1,得sinα,故选D【点睛】本题主要考查同角三角函数的基本关系、以及三角函数在各个象限中的符号,属于基础题6、C【解析】将函数y=sin(x-)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到y=sin(x-),再向左平移个单位得到的解析式为y=sin((x+)-)=y=sin(x-),故选C7、D【解析】根据给定条件,将指数式化成对数式,再借助换底公式及对数运算法则计算即得.【详解】因为,于是得,,又因为,则有,即,因此,,而,解得,所以.故选:D8、A【解析】根据函数的奇偶性和单调性,将不等式进行等价转化,求解即可.【详解】∵f(x)为偶函数,∴f(x)=f(|x|).则f(|2x-1|)<f.又∵f(x)在[0,+∞)上单调递增,∴|2x-1|<,解得<x<.故选:.【点睛】本题考查利用函数奇偶性和单调性解不等式,属综合基础题.9、A【解析】函数f(x)=ax在R上是减函数,根据指数函数的单调性得出0<a<1;函数g(x)=(4-a)⋅x在R上是增函数,得出0<a<4且【详解】函数f(x)=ax在R上是减函数,则函数g(x)=(4-a)⋅x在R上是增函数,则4-a>0,而a>0且a≠1,解得:0<a<4且a≠1,故“函数fx=ax在R上是减函数”是“函数gx故选:A.10、D【解析】根据给定条件利用对数型复合函数单调性列式求解作答.【详解】函数中,令,函数在上单调递增,而函数在上单调递增,则函数在上单调递增,且,因此,,解得,所以实数a的取值范围为.故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、53【解析】设,则,从而求出,再根据的取值范围,求出式子的最大值.【详解】设,因为为圆上一点,则,且,则(当且仅当时取得最大值),故答案为:53.【点睛】本题属于圆与距离的应用问题,主要考查代数式的最值求法.解决此类问题一是要将题设条件转化为相应代数式;二是要确定代数式中变量的取值范围.12、③【解析】利用正弦型函数的对称性判断①②的正误,利用平移变换判断③的正误,利用周期性与单调性判断④的正误.【详解】解:对于①,因为f()=sinπ=0,所以不是对称轴,故①错;对于②,因为f()=sin,所以点不是对称中心,故②错;对于③,将把f(x)的图象向左平移个单位,得到的函数为y=sin[2(x)]=sin(2x)=cos2x,所以得到一个偶函数的图象;对于④,因为若x∈[0,],则,所以f(x)在[0,]上不单调,故④错;故正确的结论是③故答案为③【点睛】此题考查了正弦函数的对称性、三角函数平移的规律、整体角处理的方法,正弦函数的图象与性质是解本题的关键三、13、9【解析】利用求的最小值即可.【详解】,当且仅当a=b=时取等号,不等式恒成立,则m≤9,故m的最大值为9.故答案为:9.14、【解析】根据终边上的点,结合即可求函数值.【详解】由题意知:角在第一象限,且终边过,∴.故答案为:.15、【解析】令,转化条件为方程有解,运算可得【详解】令,则,化简得,所以,解得或(舍去),当时,,符合题意,所以得最小值为.故答案为:.16、k≥或k≤-4【解析】算出直线PA、PB的斜率,并根据斜率变化的过程中求得斜率的取值范围详解】直线PA的斜率为,同理可得PB的斜率为直线过点且与AB相交直线的斜率取值范围是k≥或k≤-4故答案为k≥或k≤-4三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)不是单调函数,理由见解析.【解析】(1)根据函数解析式在给定区间内任取,判断对应函数值的大小关系,即可说明函数的单调性.(2)利用三元基本不等式求在上的最值并确定等号成立的条件,即可判断的单调性.【小问1详解】由题设,且,任取,则,又,,,,即,∴,即,∴函数在区间上是严格增函数;【小问2详解】由题设,在上,当且仅当时等号成立,∴,显然在的两侧单调性不同.∴在上不是单调函数.18、(1)(2)使每间熊猫居室的宽为,每间居室的长为15m时所建造的每间熊猫居室面积最大;每间熊猫居室的最大面积为150【解析】(1)根据周长求出居室的长,再根据矩形面积公式得函数关系式,最后根据实际意义确定定义域(2)根据对称轴与定义区间位置关系确定最值取法:在对称轴处取最大值试题解析:解:(1)设熊猫居室的宽为(单位),由于可供建造围墙的材料总长是,则每间熊猫居室的长为(单位m)所以每间熊猫居室的面积又得(2)二次函数图象开口向下,对称轴且,当时,,所以使每间熊猫居室的宽为,每间居室的长为15m时所建造的每间熊猫居室面积最大;每间熊猫居室的最大面积为150点睛:在建立二次函数模型解决实际问题中的最优问题时,一定要注意自变量的取值范围,需根据函数图象的对称轴与函数定义域在坐标系中对应区间之间的位置关系讨论求解.解决函数应用问题时,最后还要还原到实际问题19、(1);(2).【解析】(1)求出直线AB的斜率即可写出其点斜式方程,利用勾股定理可求得弦长;(2)当弦被点平分时,AB与垂直,由此可求出直线AB的斜率,写出其点斜式方程化简即可.【详解】(1)依题意,直线AB的斜率为,又直线AB过点,所以直线AB的方程为:,圆心到直线AB的距离为,则,所以;(2)当弦被点平分时,AB与垂直,因为,所以,直线AB的点斜式方程为,即.【点睛】本题考查直线的点斜式方程、直线截圆所得弦长,属于基础题.20、(1);(2)【解析】(1)由不等式的解集为可知是方程的两个根,即可求出,根据的单调性求出其在的最大值,即可得出m的范围;(2)方程可化为,令,则有两个不同的实数解,,根据函数性质可列出不等式求解.【详解】(1)∵不等式的解集为∴,是方程的两个根∴,解得.∴则∴存在,使不等式成立,等价于在上有解,而在时单调递增,∴∴的取值范围为(2)原方程可化为令,则,则有两个不同的实数解,,其中,,或,记,则①,解得或②,不等式组②无实数解∴实数的取值范围为【点睛】本题考查一元二次不等式的解集与方程的根的关系,考查函数的单调性,考

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论