版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省梅河口市博文中学2025届高一数学第一学期期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在长方体中,,,则该长方体的外接球的表面积为A. B.C. D.2.若,则它是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角3.已知是函数的反函数,则的值为()A.0 B.1C.10 D.1004.已知α,β是两个不同的平面,m,n是两条不同的直线,给出下列命题:①若m∥α,m∥β,则α∥β②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;③m⊂α,n⊂β,m、n是异面直线,那么n与α相交;④若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β其中正确的命题是()A.①② B.②③C.③④ D.④5.如果全集,,则A. B.C. D.6.若函数,则的单调递增区间为()A. B.C. D.7.直线x+1=0的倾斜角为A.0 B.C. D.8.下列函数中最小值为6的是()A. B.C D.9.若函数,在区间上单调递增,在区间上单调递减,则()A.1 B.C.2 D.310.“”是“”的()A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11._________.12.幂函数,当取不同的正数时,在区间上它们的图像是一族美丽的曲线(如图).设点,连接,线段恰好被其中的两个幂函数的图像三等分,即有.那么_______13.集合,,则__________.14.若,则=_________.15.已知函数,若函数恰有两个不同的零点,则实数的取值范围是_____16.已知奇函数在上是增函数,若,,,则,,的大小关系为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知全集,集合,,.(1)若,求;(2)若,求实数a的取值范围.18.(1)已知,求的值;(2)已知,,且,求的值19.某厂家拟在年举行某产品的促销活动,经调查,该产品的年销售量(即该产品的年产量)(单位:万件)与年促销费(单位:万元)满足(为常数),如果不举行促销活动,该产品的年销售量是万件,已知年生产该产品的固定投入为万元,每生产万件该产品需要再投入万元,厂家将每件产品的销售价格定为每件产品年平均成本的倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用).(1)将年该产品的利润(单位:万元)表示为年促销费用的函数;(2)该厂家年的促销费用为多少万元时,厂家的利润最大?20.已知函数,且的解集为.(1)求函数的解析式;(2)设,若对于任意的、都有,求的最小值.21.函数(其中)的图像如图所示.(Ⅰ)求函数的解析式;(Ⅱ)求函数在上的最大值和最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由题求出长方体的体对角线,则外接球的半径为体对角线的一半,进而求得答案【详解】由题意可得,长方体体对角线为,则该长方体的外接球的半径为,因此,该长方体的外接球的表面积为.【点睛】本题考查外接球的表面积,属于一般题2、C【解析】根据象限角的定义判断【详解】因为,所以是第三象限角故选:C3、A【解析】根据给定条件求出的解析式,再代入求函数值作答.【详解】因是函数的反函数,则,,所以的值为0.故选:A4、D【解析】利用平面与平面垂直和平行的判定和性质,直线与平面平行的判断,对选项逐一判断即可【详解】①若m∥α,m∥β,则α∥β或α与β相交,错误命题;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β或α与β相交.错误的命题;③m⊂α,n⊂β,m、n是异面直线,那么n与α相交,也可能n∥α,是错误命题;④若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β.是正确的命题故选D【点睛】本题考查平面与平面的位置关系,直线与平面的位置关系,考查空间想象力,属于中档题.5、C【解析】首先确定集合U,然后求解补集即可.【详解】由题意可得:,结合补集的定义可知.本题选择C选项.【点睛】本题主要考查集合的表示方法,补集的定义等知识,意在考查学生的转化能力和计算求解能力.6、A【解析】令,则,根据解析式,先求出函数定义域,结合二次函数以及对数函数的性质,即可得出结果.【详解】令,则,由真数得,∵抛物线的开口向下,对称轴,∴在区间上单调递增,在区间上单调递减,又∵在定义域上单调递减,由复合函数的单调性可得:的单调递增区间为.故选:A.7、C【解析】轴垂直的直线倾斜角为.【详解】直线垂直于轴,倾斜角为.故选:C【点睛】本题考查直线倾斜角,属于基础题.8、B【解析】利用基本不等式逐项分析即得.【详解】对于A,当时,,故A错误;对于B,因为,所以,当且仅当,即时取等号,故B正确;对于C,因为,所以,当且仅当,即,等号不能成立,故C错误;对于D,当时,,故D错误.故选:B.9、B【解析】根据以及周期性求得.【详解】依题意函数,在区间上单调递增,在区间上单调递减,则,即,解得.故选:B10、B【解析】利用充分条件,必要条件的定义即得.【详解】由可推出,由,即或,推不出,故“”是“”的充分不必要条件.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据诱导公式可求该值.【详解】.故答案为:.【点睛】诱导公式有五组,其主要功能是将任意角的三角函数转化为锐角或直角的三角函数.记忆诱导公式的口诀是“奇变偶不变,符号看象限”.本题属于基础题.12、1【解析】求出的坐标,不妨设,,分别过,,分别代入点的坐标,变形可解得结果.【详解】因为,,,所以,,不妨设,,分别过,,则,,则,所以故答案为:113、【解析】通过求二次函数的值域化简集合,再根据交集的概念运算可得答案.【详解】因为,,所以.故答案为:【点睛】本题考查了交集的运算,考查了求二次函数的值域,搞清楚集合中元素符号是解题关键,属于基础题.14、【解析】分析和的关系可知,然后用余弦的二倍角公式求解即可.【详解】∵,∴.故答案为:.15、【解析】题目转化为,画出函数图像,根据图像结合函数值计算得到答案.详解】,,即,画出函数图像,如图所示:,,根据图像知:.故答案为:16、【解析】根据奇函数的性质得,再根据对数函数性质得,进而结合函数单调性比较大小即可.【详解】解:因为函数为奇函数,所以,由于函数在单调递增,所以,由于,所以因为函数在上是增函数,所以,即故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)时,分别求出集合,,,再根据集合的运算求得答案;(2)根据,列出相应的不等式组,解得答案.【小问1详解】当时,,,所以,故.【小问2详解】因为,所以,解得.18、(1)(2),【解析】(1)先求得,然后对除以,再分子分母同时除以,将表达式变为只含的形式,代入的值,从而求得表达式的值.(2)利用诱导公式化简已知条件,平方相加后求得的值,进而求得的值,接着求得的值,由此求得的大小.【详解】(1)(2)由已知条件,得,两式求平方和得,即,所以.又因为,所以,把代入得.考虑到,得.因此有,【点睛】本小题主要考查利用齐次方程来求表达式的值,考查利用诱导公式和同角三角函数的基本关系式化简求值,考查特殊角的三角函数值.形如,或者的表达式,通过分子分母同时除以或者,转化为的形式.19、(1);(2)促销费用投入万元时,厂家的利润最大.【解析】(1)由时,可构造方程求得,得到,代入利润关于的函数中,化简可得结果;(2)利用基本不等式可求得,由取等条件可得结果.【详解】(1)由题意可知:当时,(万件),,解得:,,又每件产品的销售价格为,年利润,(2)当时,(当且仅当,即时取等号),此时年利润(万元);该厂家年的促销费用投入万元时,厂家的利润最大,最大为万元.20、(1);(2)的最小值为.【解析】(1)利用根与系数的关系可求得、的值,即可得出函数的解析式;(2)利用二次函数和指数函数的基本性质可求得函数在区间上的最大值和最小值,由已知可得出,由此可求得实数的最小值.【小问1详解】解:因为的解集为,所以的根为、,由韦达定理可得,即,,所以.【小问2详解】解:由(1)可得,当时,,故当时,,因为对于任意的、都有,即求,转化为,而,,所以,.所以的最小值为.21、(Ⅰ);(Ⅱ)最大值为1,最小值为0.【解析】(Ⅰ)由图象可得,从而得可得,再根据函数图象过点,可求得,故可得函数的解析式.(Ⅱ)根据的范围得到的范围,得到的范围后可得的范围,由此可得函数的最值试题解析:(Ⅰ)由图像可知,,∴,∴.∴又点在函数的图象上,∴,,∴,,又,∴∴的解析式是(Ⅱ)∵,∴∴,∴,∴当时,函数取得最大值为1;当时,函数取得最小值为0点睛:根据图象求解析式y=Asin(ωx+φ)的方法(1)根据函数图象的最高点或最低点可求得A;(2)ω由周期T确定,即先由图象得到函数的周期,再求出T(3)φ的求法通常有以下两种:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版无学生单位信息化项目联合研发合同3篇
- 二零二五年度个人融资担保保险合同范本2篇
- 党建知识讲解
- 维修维护委托合同三篇
- 医疗器械工程师研发医疗设备
- 二零二五年度户外活动策划个人劳务合同2篇
- 二零二五年度企业职工工伤保险补贴专项资金使用协议3篇
- 二零二五年度个人出租公寓合同(含社区文化活动参与)3篇
- 二零二五年度水产养殖产品出口代理合同样本
- 二零二五版商场物业管理合同范本(绿色能源利用规划)3篇
- 时间的重要性英文版
- 2024老旧小区停车设施改造案例
- 合成生物学技术在生物制药中的应用
- 消化系统疾病的负性情绪与心理护理
- 高考语文文学类阅读分类训练:戏剧类(含答案)
- 协会监事会工作报告大全(12篇)
- 灰坝施工组织设计
- WS-T 813-2023 手术部位标识标准
- 同意更改小孩名字协议书
- 隐患排查治理资金使用专项制度
- 家具定做加工合同
评论
0/150
提交评论