版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省油田第十一中学2025届高二数学第一学期期末学业质量监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.阅读如图所示程序框图,运行相应的程序,输出S的结果是()A.128 B.64C.16 D.322.下列函数的求导正确的是()A. B.C. D.3.集合,则集合A的子集个数为()A.2个 B.4个C.8个 D.16个4.已知椭圆是椭圆上关于原点对称的两点,设以为对角线的椭圆内接平行四边形的一组邻边斜率分别为,则()A.1 B.C. D.5.已知数列是首项为,公差为1的等差数列,数列满足.若对任意的,都有成立,则实数的取值范围是()A., B.C., D.6.在中,角,,所对的边分别为,,,若,,,则A. B.2C.3 D.7.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上两人与下三人等,问各得几何?”其意思为:“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得之和与丙、丁、戊所得之和相同,且是甲、乙、丙、丁、戊所得以此为等差数列,问五人各得多少钱?”(“钱”是古代一种重量单位),这个问题中戊所得为()A.钱 B.钱C.钱 D.钱8.在的展开式中,的系数为()A. B.5C. D.109.已知两个向量,,且,则的值为()A.-2 B.2C.10 D.-1010.函数的图像大致是()A. B.C. D.11.设双曲线C:的左、右焦点分别为,点P在双曲线C上,若线段的中点在y轴上,且为等腰三角形,则双曲线C的离心率为()A B.2C. D.12.已知点到直线:的距离为1,则等于()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.抛物线的准线方程是,则实数___________.14.已知曲线的方程是,给出下列四个结论:①曲线C恰好经过4个整点(即横、纵坐标均为整数的点);②曲线有4条对称轴;③曲线上任意一点到原点的距离都不小于1;④曲线所围成图形的面积大于4;其中,所有正确结论的序号是_____15.已知点P为椭圆上的任意一点,点,分别为该椭圆的左、右焦点,则的最大值为______________.16.已知曲线,则以下结论正确的是______.①曲线C关于点对称;②曲线C关于y轴对称;③曲线C被x轴所截得的弦长为2;④曲线C上的点到原点距离都不超过2.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)(1)若在是减函数,求实数m的取值范围;(2)已知函数在R上无极值点,求a的值.18.(12分)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:(1)已知样本中分数在[40,50)的学生有5人,试估计总体中分数小于40的人数;(2)试估计测评成绩的75%分位数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例19.(12分)已知圆C:(1)若过点的直线l与圆C相交所得的弦长为,求直线l的方程;(2)若P是直线:上的动点,PA,PB是圆C的两条切线,A,B是切点,求四边形PACB面积的最小值20.(12分)设数列的前项和为,且.(1)求数列的通项公式;(2)记,数列的前项和为,求不等式的解集.21.(12分)已知甲组数据的茎叶图如图所示,其中数据的整数部分为茎,数据的小数部分(仅一位小数)为叶,例如第一个数据为5.3(1)求:甲组数据的平均值、方差、中位数;(2)乙组数据为,且甲、乙两组数据合并后的30个数据的平均值为,方差为,求:乙组数据的平均值和方差,写出必要的计算步骤.参考公式:平均值,方差22.(10分)某校从高三年级学生中随机抽取名学生的某次数学考试成绩,将其成绩分成,,,,的组,制成如图所示的频率分布直方图.(1)求图中的值;(2)估计这组数据的平均数;(3)若成绩在内的学生中男生占.现从成绩在内的学生中随机抽取人进行分析,求人中恰有名女生的概率.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据程序框图的循环逻辑写出执行步骤,即可确定输出结果.【详解】根据流程图的执行逻辑,其执行步骤如下:1、成立,则;2、成立,则;3、成立,则;4、成立,则;5、不成立,输出;故选:C2、B【解析】对各个选项进行导数运算验证即可.【详解】,故A错误;,故B正确;,故C错误;,故D错误.故选:B3、C【解析】取,再根据的周期为4,可得,即可得解.【详解】因为,所以.时,,时,,时,,时,,所以集合,所以的子集的个数为,故选:C.4、C【解析】根据椭圆的对称性和平行四边形的性质进行求解即可.【详解】是椭圆上关于原点对称两点,所以不妨设,即,因为平行四边形也是中心对称图形,所以也是椭圆上关于原点对称的两点,所以不妨设,即,,得:,即,故选:C5、D【解析】由等差数列通项公式得,再结合题意得数列单调递增,且满足,,即,再解不等式即可得答案.【详解】解:根据题意:数列是首项为,公差为1的等差数列,所以,由于数列满足,所以对任意的都成立,故数列单调递增,且满足,,所以,解得故选:6、A【解析】利用正弦定理,可直接求出的值.【详解】在中,由正弦定理得,所以,故选A.【点睛】本题考查利用正弦定理求边,要记得正弦定理所适用的基本类型,考查计算能力,属于基础题7、D【解析】根据题意将实际问题转化为等差数列的问题即可解决【详解】解:由题意,可设甲、乙、丙、丁、戊五人分得的钱分别为,,,,则,,,,成等差数列,设公差为,整理上面两个算式,得:,解得,故选:8、C【解析】首先写出展开式的通项公式,然后结合通项公式确定的系数即可.【详解】展开式的通项公式为:,令可得:,则的系数为:.故选:C.【点睛】二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项9、C【解析】根据向量共线可得满足的关系,从而可求它们的值,据此可得正确的选项.【详解】因为,故存在常数,使得,所以,故,所以,故选:C.10、B【解析】由导数判断函数的单调性及指数的增长趋势即可判断.【详解】当时,,∴在上单调递增,当时,,∴在上单调递减,排除A、D;又由指数函数增长趋势,排除C.故选:B11、A【解析】根据是等腰直角三角形,再表示出的长,利用三角形的几何性质即可求得答案.【详解】线段的中点在y轴上,设的中点为M,因为O为的中点,所以,而,则,为等腰三角形,故,由,得,又为等腰直角三角形,故,即,解得,即,故选:A.12、D【解析】利用点到直线的距离公式,即可求得参数的值.【详解】因为点到直线:的距离为1,故可得,整理得,解得.故选:.二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】将抛物线方程化为标准方程,根据其准线方程即可求得实数.【详解】抛物线化为标准方程:,其准线方程是,而所以,即,故答案为:14、②③④【解析】根据曲线方程作出曲线,即可根据题意判断各结论的真假【详解】曲线的简图如下:根据图象以及方程可知,曲线C恰好经过9个整点,它们是,,,所以①不正确;由图可知,曲线有4条对称轴,它们分别是轴,轴,直线和,②正确;由图可知,曲线上任意一点到原点的距离都不小于1,③正确;由图可知,曲线所围成图形的面积等于,④正确故答案为:②③④15、【解析】利用正弦定理表示出,再求t,再利用求的最大值即可.【详解】在中,由正弦定理得,所以,,即求的最大值,也就是求t的最小值,而,即最大时,由椭圆的性质知当P为椭圆上顶点时最大,此时,,所以,所以的最大值是1,,所以,故答案为:.【点睛】本题考查椭圆焦点三角形的问题,考查正弦定理的应用.16、②④【解析】将x换成,将y换成,若方程不变则关于原点对称;将x换成,曲线的方程不变则关于y轴对称;令通过解方程即可求得被x轴所截得的弦长;利用基本不等式即可判断出曲线C上y轴右侧的点到原点距离是否不超过2,根据曲线C关于y轴对称,即可判断出曲线C上的点到原点距离是否都不超过2.【详解】对于①,将x换成,将y换成,方程改变,则曲线C关于点不对称,故①错误;对于②,将x换成,曲线的方程不变,则曲线C关于y轴对称,故②正确;对于③,令得,,解得,即曲线C与x轴的交点为和,则曲线C被x轴所截得的弦长为,故③错误;对于④,当时,,可得,当且仅当时取等号,即,则,即曲线C上y轴右侧的点到原点的距离都不超过2,此曲线关于y轴对称,即曲线C上y轴左侧的点到原点的距离也不超过2,故④正确;故答案为:②④.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)1【解析】(1)将问题转化为在内恒成立,求出的最小值,即可得到答案;(2)对函数求导得,由,即可得到答案;【详解】(1)依题意知,在内恒成立,所以在内恒成立,所以,因为的最小值为1,所以,所以实数m的取值范围是.(2),依题意有,即,,解得.18、(1)20人(2)(3)【解析】(1)根据频率分布直方图先求出样本中分数在[40,90)的频率,即可解出;(2)先根据频率分布直方图判断出75%分位数在[70,80)之间,即可根据分位数公式算出;(3)根据频率分布直方图知分数不小于70分的人数中男女各占30人,从而可知样本中男生有60人,女生有40人,即可求出总体中男生和女生人数的比例【小问1详解】由频率分布直方图知,分数在[50,90)频率为(0.01+0.02+0.04+0.02)×10=0.9,在样本中分数在[50,90)的人数为100×0.9=90(人),在样本中分数在[40,90)的人数为95人,所以分数在[40,90)的人数为400×0.95=380(人),总体中分数小于40的人数为20人【小问2详解】测试成绩从低到高排序,占人数75%的人分数在[70,80)之间,所以估计测评成绩的75%分位数为【小问3详解】由频率分布直方图知,分数不小于70分的人数共有60人,由已知男女各占30人,从而样本中男生有60人,女生有40人,故总体中男生与女生的比例为19、(1)或.(2)8【解析】(1)先判断当斜率不存在时,不满足条件;再判断当斜率存在时,设利用垂径定理列方程求出k,即可求出直线方程;(2)过P作圆C的两条切线,切点分别为A、B,连结CA、CB,得到.判断出当时,最小,四边形PACB面积取得最小值.利用点到直线的距离公式求出,,即可求出四边形PACB面积的最小值.【小问1详解】圆C:化为标准方程为:,所以圆心为,半径为r=4.(1)当斜率不存在时,x=1代入圆方程得,弦长为,不满足条件;(2)当斜率存在时,设即.圆心C到直线l的距离,解得:或k=0,所以直线方程为或.【小问2详解】过P作圆C的两条切线,切点分别为A、B,连结CA、CB,则.因为,所以所以.所以当时,最小,四边形PACB面积取得最小值.所以,所以,即四边形PACB面积的最小值为8.20、(1)(2)【解析】(1)利用与的关系求解即可;(2)首先利用裂项求和得到,从而得到,再解不等式即可.【小问1详解】令,则,当时,,当时,也符合上式,即数列的通项公式为.【小问2详解】由(1)得,则,所以故可化为:,故,故不等式的解集为.21、(1),,;(2),.【解析】(1)根据茎叶图求平均值,再由方差与均值的关系求,将茎叶图中的数据从小到大排列确定中位数M.(2)由甲乙平均数及(1)的结果列方程求乙组数据的平均值,再由方差与均值的关系列方程组求出,进而求方差.【小问1详解】,∴,由茎叶图知:数据从小到大排列为∴.【小问2详解】由题意,,又,因此.22、(1)(2)77(3)【解析】(1)根据给定条件结合频率分布直方图中各小矩形面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高二上学期数学人教A版(2019)期末模拟测试卷B卷(含解析)
- 八年级上学期期末复习《全等三角形》单元试卷(含部分解析) 2024-2025学年人教版数学
- 立白中餐厅整合营销案例
- 2024年提高活动效果的4大招研究方案
- 两个乡镇合作的协议书
- 合同书电子版合成一份
- 合同审批流程及收集资料的目录
- 跨境电商课件
- 《研发项目》课件
- 智慧消防大数据一体化服务平台-培训中心分享
- 新概念英语青少版2A(1-15)期末测试卷
- 2024陕西榆林市黄河东线引水工程限公司招聘20人高频难、易错点500题模拟试题附带答案详解
- 工业自动化设备安装调试教程
- 【多元化经营战略下的企业财务绩效探析:以海尔集团为例(论文)12000字】
- 2024年大学生信息素养大赛培训考试题库500题(含答案)
- 飞灰螯合物运输服务方案
- 二年级加减乘除混合口算题
- 金属非金属地下矿山安全生产标准化定级评分标准(2023版)
- ISO 22003-1:2022《食品安全-第 1 部分:食品安全管理体系 审核与认证机构要求》中文版(机翻)
- 25吨汽车吊吊装施工方案
- 2024秋期国家开放大学《可编程控制器应用实训》一平台在线形考(形成任务4)试题及答案
评论
0/150
提交评论