版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省联谊校2025届高二数学第一学期期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列数列是递增数列的是()A. B.C. D.2.若双曲线经过点,且它的两条渐近线方程是,则双曲线的离心率是()A. B.C. D.103.已知直线是圆的对称轴,过点A作圆C的一条切线,切点为B,则|AB|=()A.1 B.2C.4 D.84.已知,是双曲线的左右焦点,过的直线与曲线的右支交于两点,则的周长的最小值为()A. B.C. D.5.已知正方体的棱长为1,且满足,则的最小值是()A. B.C. D.6.已知点,,,动点P满足,则的取值范围为()A. B.C. D.7.已知集合,则()A. B.C. D.8.若平面的一个法向量为,点,,,,到平面的距离为()A.1 B.2C.3 D.49.世界上最早在理论上计算出“十二平均律”的是我国明代杰出的律学家朱载堉,他当时称这种律制为“新法密率”十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它前一个单音的频率的比都相等,且最后一个单音是第一个单音频率的2倍.已知第十个单音的频率,则与第四个单音的频率最接近的是()A.880 B.622C.311 D.22010.已知,则在方向上的投影为()A. B.C. D.11.如图,过抛物线的焦点的直线交抛物线于点,,交其准线于点,准线与对称轴交于点,若,且,则此抛物线的方程为()A. B.C. D.12.在正方体中,为棱的中点,为棱的中点,则直线与平面所成角的正弦值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.椭圆的弦被点平分,则这条弦所在的直线方程是________14.已知等比数列的前n项和为,且满足,则_____________15.已知,求_____________.16.已知曲线,则曲线在点处的切线方程为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设数列的前项和为,已知,且(1)证明:;(2)求18.(12分)已知函数,(1)讨论的单调性;(2)若时,对任意都有恒成立,求实数的最大值19.(12分)一个盒中装有编号分别为、、、的四个形状大小完全相同的小球.(1)从盒中任取两球,列出所有的基本事件,并求取出的球的编号之和大于的概率;(2)从盒中任取一球,记下该球的编号,将球放回,再从盒中任取一球,记下该球的编号,列出所有的基本事件,并求的概率.20.(12分)已知抛物线上一点到其焦点F的距离为2.(1)求拋物线方程;(2)直线与拋物线相交于两点,求的长.21.(12分)已知函数.(1)讨论的单调性;(2)当时,求函数在内的零点个数.22.(10分)已知椭圆的焦点与双曲线的焦点相同,且D的离心率为.(1)求C与D的方程;(2)若,直线与C交于A,B两点,且直线PA,PB的斜率都存在.①求m的取值范围.②试问这直线PA,PB的斜率之积是否为定值?若是,求出该定值;若不是,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】分别判断的符号,从而可得出答案.【详解】解:对于A,,则,所以数列为递减数列,故A不符合题意;对于B,,则,所以数列为递减数列,故B不符合题意;对于C,,则,所以数列为递增数列,故C符合题意;对于D,,则,所以数列递减数列,故D不符合题意.故选:C.2、A【解析】由已知设双曲线方程为:,代入求得,计算即可得出离心率.【详解】双曲线经过点,且它的两条渐近线方程是,设双曲线方程为:,代入得:,.所以双曲线方程为:..双曲线C的离心率为故选:A3、C【解析】首先将圆心坐标代入直线方程求出参数a,求得点A的坐标,由切线与圆的位置关系构造直角三角形从而求得.【详解】圆即,圆心为,半径为r=3,由题意可知过圆的圆心,则,解得,点A坐标为,,切点为B则,故选:C【点睛】本题考查直线与圆的位置关系,属于基础题.4、C【解析】根据双曲线的定义和性质,当弦垂直于轴时,即可求出三角形的周长的最小值.【详解】由双曲线可知:的周长为.当轴时,周长最小值为故选:C5、C【解析】由空间向量共面定理可得点四点共面,从而将求的最小值转化为求点到平面的距离,再根据等体积法计算.【详解】因为,由空间向量的共面定理可知,点四点共面,即点在平面上,所以的最小值为点到平面的距离,由正方体棱长为,可得是边长为的等边三角形,则,,由等体积法得,,所以,所以的最小值为.故选:C【点睛】共面定理的应用:设是不共面的四点,则对空间任意一点,都存在唯一的有序实数组使得,说明:若,则四点共面.6、C【解析】由题设分析知的轨迹为(不与重合),要求的取值范围,只需求出到圆上点的距离范围即可.【详解】由题设,在以为直径的圆上,令,则(不与重合),所以的取值范围,即为到圆上点的距离范围,又圆心到的距离,圆的半径为2,所以的取值范围为,即.故选:C7、C【解析】解一元二次不等式求集合A,再由集合的交运算求即可.【详解】由题设,,∴.故选:C.8、B【解析】求出,点A到平面的距离:,由此能求出结果【详解】解:,,,,∴为平面的一条斜线,且∴点到平面的距离:故选:B.9、C【解析】依题意,每一个单音的频率构成一个等比数列,由,算出公比,结合,即可求出.【详解】设第一个单音的频率为,则最后一个单音的频率为,由题意知,且每一个单音的频率构成一个等比数列,设公比为,则,解得:又,则与第四个单音的频率最接近的是311,故选:C【点睛】关键点点睛:本题考查等比数列通项公式的运算,解题的关键是分析题意将其转化为等比数列的知识,考查学生的计算能力,属于基础题.10、C【解析】利用向量数量积的几何意义即得【详解】,故在方向上的投影为:故选:C11、B【解析】根据抛物线定义,结合三角形相似以及已知条件,求得,则问题得解.【详解】根据题意,过作垂直于准线,垂足为,过作垂直于准线,垂足为,如下所示:因为,又//,,则,故可得,又△△,则,即,解得,故抛物线方程为:.故选:.12、D【解析】建立空间直角坐标系,计算平面的法向量,利用线面角的向量公式即得解【详解】不妨设正方体的棱长为2,连接,以为坐标原点如图建立空间直角坐标系,则,,,,,,由于平面,平面,故又正方形,故平面故平面,所以为平面的一个法向量,故直线与平面所成角正弦值为.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、2x+4y-3=0【解析】设弦端点为,又A,B在椭圆上,、即直线AB的斜率为直线AB的方程为,.14、##31.5【解析】根据等比数列通项公式,求出,代入求和公式,即可得答案.【详解】因为数列为等比数列,所以,又,所以,所以.故答案为:15、【解析】根据导数的定义即可求解.【详解】,所以,故答案为:.16、【解析】求解导函数,然后根据导数的几何意义求出切线斜率,并计算,利用点斜式写出切线方程.【详解】,由题意,切线的斜率为,,所以曲线在点处的切线方程为,即.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)【解析】(1)当时,由题可得,,两式子相减可得,即,然后验证当n=1时,命题成立即可;(2)通过求解数列的奇数项与偶数项的和即可得到其对应前n项和的通项公式.【详解】(1)由条件,对任意,有,因而对任意,有,两式相减,得,即,又,所以,故对一切,(2)由(1)知,,所以,于是数列是首项,公比为3的等比数列,数列是首项,公比为3的等比数列,所以,于是从而,综上所述,.【点睛】已知数列{an}的前n项和Sn,求数列的通项公式,其求解过程分为三步:(1)先利用a1=S1求出a1;(2)用n-1替换Sn中的n得到一个新的关系,利用an=Sn-Sn-1(n≥2)便可求出当n≥2时an的表达式;(3)对n=1时的结果进行检验,看是否符合n≥2时an的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n=1与n≥2两段来写.数列求和的常用方法有倒序相加法,错位相减法,裂项相消法,分组求和法,并项求和法等,可根据通项特点进行选用.18、(1)答案见解析;(2).【解析】(1)利用导数与单调性的关系分类讨论即得;(2)由题可得在上恒成立,构造函数,利用导数求函数的最值即可.【小问1详解】的定义域为,且当时,显然,在定义域上单调递增;当时,令,得则有:极大值即在上单调递增,在上单调递减,综上所述,当时,在定义域上单调递增;当时,在上单调递增,在上单调递减.【小问2详解】当时,,对于满足恒成立,在上恒成立,令,只需∴,,,令,则,在上单调递增,又,,存在唯一的,使得,即,两边取自然对数得,极小值,则的最大值为19、(1)基本事件答案见解析,概率为;(2)基本事件答案见解析,概率为.【解析】(1)利用列举法列举出所有的基本事件,并确定事件“取出的球的编号之和大于”所包含的基本事件数,利用古典概型的概率公式可求得结果;(2)利用列举法列举出所有的基本事件,并确定事件“”所包含的基本事件数,利用古典概型的概率公式可求得结果.【详解】(1)记“从盒中任取两球,取出球的编号之和大于”为事件,样本点表示“从盒中取出、号球”,且和表示相同的样本点(以此类推),则样本空间为,则,根据古典概型可知,从盒中任取两球,取出球的编号之和大于的概率为;(2)记“”为事件,样本点表示第一次取出号球,将球放回,从盒中取出号球(以此类推),则样本空间,则,所以,故事件“”的概率为.20、(1)(2)【解析】(1)根据抛物线焦半径公式即可得解;(2)联立方程组求出交点坐标,即可得到弦长.【小问1详解】由题:抛物线上一点到其焦点F的距离为2,即,所以抛物线方程:【小问2详解】联立直线和得,解得,,21、(1)当,在单调递增;当,在单调递增,在单调递减.(2)0.【解析】(1)求得,对参数分类讨论,即可由每种情况下的正负确定函数的单调性;(2)根据题意求得,利用进行放缩,只需证即,再利用导数通过证明从而得到恒成立,则问题得解.【小问1详解】以为,其定义域为,又,故当时,,在单调递增;当时,令,可得,且令,解得,令,解得,故在单调递增,在单调递减.综上所述:当,在单调递增;当,在单调递增,在单调递减.【小问2详解】因为,故可得,则,;下证恒成立,令,则,故在单调递减,又当时,,故在恒成立,即;因为,故,令,下证在恒成立,要证恒成立,即证,又,故即证,令,则,令,解得,此时该函数单调递增,令,解得,此时该函数单调递减,又当时,,也即;令,则,令,解得,此时该函数单调递减,令,解得,此时该函数单调递增,又当时,,也即;又,故恒成立,则在恒成立,又,故当时,恒成立,则在上的零点个数是.【点睛】本题考察利用导数研究含参函数的单调性,以及函数零点问题的处理;本题第二问处理的关键是通过分离参数和构造函数,证明恒成立,属综合困难题.22、(1)C:;D:;(2)①且;②见解析.【解析】(1)根据D的离心率为,求出从而求出双曲线的焦点,再由椭圆的焦点与双曲线的焦点相同,即可求出,即可求出C与D的方程;(2)①根据题意容易
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年个人独资企业资产转让与品牌授权合同2篇
- 2025年外研衔接版五年级语文下册月考试卷
- 2025年沪教版八年级生物上册阶段测试试卷含答案
- 二零二五年度畜牧饲养产业质量标准合作合同4篇
- 2025个人汽车抵押借款合同范本2
- 2025幼儿园基础设施租赁合同范本
- 2025贷款基本建设合同样式
- 2025磷矿石购销合同范文
- 2025年个人房产测绘合同规范范本
- 2025水电装修承包合同
- 绘本《图书馆狮子》原文
- 安全使用公共WiFi网络的方法
- 2023年管理学原理考试题库附答案
- 【可行性报告】2023年电动自行车相关项目可行性研究报告
- 欧洲食品与饮料行业数据与趋势
- 放疗科室规章制度(二篇)
- 中高职贯通培养三二分段(中职阶段)新能源汽车检测与维修专业课程体系
- 浙江省安全员C证考试题库及答案(推荐)
- 目视讲义.的知识
- 房地产公司流动资产管理制度
- 铝合金门窗设计说明
评论
0/150
提交评论