




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省东莞市南开实验学校2025届高一数学第一学期期末达标检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将半径都为1的4个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为()A. B.C. D.2.设函数与的图象的交点为,则所在的区间为()A B.C. D.3.直线经过第一、二、四象限,则a、b、c应满足()A. B.C. D.4.设函数,若关于的方程有四个不同的解,且,则的取值范围是()A. B.C. D.5.过圆C:(x﹣2)2+(y﹣2)2=4的圆心,作直线分别交x,y正半轴于点A,B,△AOB被圆分成四部分(如图),若这四部分图形面积满足SI+SⅣ=SⅡ+SⅢ,则这样的直线AB有A.0条 B.1条C.2条 D.3条6.函数y=的单调递减区间是()A.(-∞,1) B.[1,+∞)C.(-∞,-1) D.(-1,+∞)7.下列每组函数是同一函数的是A.f(x)=x-1, B.f(x)=|x-3|,C.,g(x)=x+2 D.,8.如图,边长为a的等边三角形ABC的中线AF与中位线DE交于点G,已知△A'DE是△ADE绕DE旋转过程中的一个图形(A'不与A,F重合),则下列命题中正确的是()①动点A'在平面ABC上的射影在线段AF上;②BC∥平面A'DE;③三棱锥A'-FED的体积有最大值.A.① B.①②C.①②③ D.②③9.已知向量,且,则A. B.C. D.10.函数的图象的一个对称中心为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知角的顶点为坐标原点,始边为轴的正半轴,终边经过点,则___________.12.已知幂函数的图象经过点,且满足条件,则实数的取值范围是___13.已知,,,则________14.已知,则_____.15.设函数和函数,若对任意都有使得,则实数a的取值范围为______16.已知函数对于任意实数x满足.若,则_______________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,(1)当时,求;18.已知函数是偶函数,且,.(1)当时,求函数的值域;(2)设,,求函数的最小值;(3)设,对于(2)中的,是否存在实数,使得函数在时有且只有一个零点?若存在,求出实数的取值范围;若不存在,请说明理由.19.对于两个函数:和,的最大值为M,若存在最小的正整数k,使得恒成立,则称是的“k阶上界函数”.(1)若,是的“k阶上界函数”.求k的值;(2)已知,设,,.(i)求的最小值和最大值;(ii)求证:是的“2阶上界函数”.20.定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界,已知函数.(1)当时,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由;(2)若函数在上是以4为上界的有界函数,求实数的取值范围.21.已知直线(1)求直线的斜率;(2)若直线m与平行,且过点,求m的方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由题意可得,底面放三个钢球,上再落一个钢球时体积最小,于是把钢球的球心连接,则可得到一个棱长为2的小正四面体,该小正四面体的高为,且由正四面体的性质可知,正四面体的中心到底面的距离是高的,且小正四面体的中心和正四面体容器的中心是重合的,所以小正四面体的中心到底面的距离是,正四面体的中心到底面的距离是,所以可知正四面体的高的最小值为,故选择C考点:几何体的体积2、C【解析】令,则,故的零点在内,因此两函数图象交点在内,故选C.【方法点睛】本题主要考查函数图象的交点与函数零点的关系、零点存在定理的应用,属于中档题.零点存在性定理的条件:(1)利用定理要求函数在区间上是连续不断的曲线;(2)要求;(3)要想判断零点个数还必须结合函数的图象与性质(如单调性、奇偶性).3、A【解析】根据直线经过第一、二、四象限判断出即可得到结论.【详解】由题意可知直线的斜率存在,方程可变形为,∵直线经过第一、二、四象限,∴,∴且故选:A.4、D【解析】由题意,根据图象得到,,,,,推出.令,,而函数.即可求解.【详解】【点睛】方法点睛:已知函数零点个数(方程根的个数)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.5、B【解析】数形结合分析出为定值,因此为定值,从而确定直线AB只有一条.【详解】已知圆与轴,轴均相切,由已知条件得,第部分的面积是定值,所以为定值,即为定值,当直线绕着圆心C移动时,只有一个位置符合题意,即直线AB只有一条.故选:B【点睛】本题考查直线与圆的实际应用,属于中档题.6、A【解析】令t=-x2+2x﹣1,则y,故本题即求函数t的增区间,再结合二次函数的性质可得函数t的增区间【详解】令t=-x2+2x﹣1,则y,故本题即求函数t的增区间,由二次函数的性质可得函数t的增区间为(-∞,1),所以函数的单调递减区间为(-∞,1).故答案为A【点睛】本题主要考查指数函数和二次函数的单调性,考查复合函数的单调性,意在考查学生对这些知识的掌握水平和分析推理能力.7、B【解析】分析:根据题意,先看了个函数的定义域是否相同,再观察两个函数的对应法则是否相同,即可得到结论.详解:对于A中,函数的定义域为,而函数的定义域为,所以两个函数不是同一个函数;对于B中,函数的定义域和对应法则完全相同,所以是同一个函数;对于C中,函数的定义域为,而函数的定义域为,所以两个函数不是同一个函数;对于D中,函数的定义域为,而函数的定义域为,所以不是同一个函数,故选B.点睛:本题主要考查了判断两个函数是否是同一个函数,其中解答中考查了函数的定义域的计算和函数的三要素的应用,着重考查了推理与计算能力,属于基础题.8、C【解析】【思路点拨】注意折叠前DE⊥AF,折叠后其位置关系没有改变.解:①中由已知可得平面A'FG⊥平面ABC∴点A'在平面ABC上的射影在线段AF上.②BC∥DE,BC⊄平面A'DE,DE⊂平面A'DE,∴BC∥平面A'DE.③当平面A'DE⊥平面ABC时,三棱锥A'-FED的体积达到最大.9、B【解析】由已知得,因为,所以,即,解得.选B10、C【解析】根据正切函数的对称中心为,可求得函数y图象的一个对称中心【详解】由题意,令,,解得,,当时,,所以函数的图象的一个对称中心为故选C【点睛】本题主要考查了正切函数的图象与性质的应用问题,其中解答中熟记正切函数的图象与性质,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用三角函数定义求出、的值,结合诱导公式可求得所求代数式的值.【详解】由三角函数的定义可得,,因此,.故答案为:.12、【解析】首先求得函数的解析式,然后求解实数的取值范围即可.【详解】设幂函数的解析式为,由题意可得:,即幂函数的解析式为:,则即:,据此有:,求解不等式组可得实数的取值范围是.【点睛】本题主要考查幂函数的定义及其应用,属于基础题.13、【解析】由诱导公式将化为,再由,根据两角差的正弦公式,即可求出结果.【详解】因,所以,,又,,所以,,所以,,所以.故答案为【点睛】本题主要考查简单的三角恒等变换,熟记两角差的正弦公式以及诱导公式,即可求解,属于常考题型.14、3【解析】利用诱导公式求出,再将所求值的式子弦化切,代值计算即得.【详解】因,所以.故答案为:3.15、【解析】先根据的单调性求出的值域A,分类讨论求得的值域B,再将条件转化为A,进行判断求解即可【详解】是上的递减函数,∴的值域为,令A=,令的值域为B,因为对任意都有使得,则有A,而,当a=0时,不满足A;当a>0时,,∴解得;当a<0时,,∴不满足条件A,综上得.故答案为.【点睛】本题考查了函数的值域及单调性的应用,关键是将条件转化为两个函数值域的关系,运用了分类讨论的数学思想,属于中档题16、3【解析】根据得到周期为2,可得结合可求得答案.【详解】解:∵,所以周期为2的函数,又∵,∴故答案为:3三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)解一元二次不等式求得集合,由补集和并集的定义可运算求得结果;(2)分别在和两种情况下,根据交集为空集可构造不等式求得结果.【小问1详解】由题意得,或,,.【小问2详解】,当时,,符合题意,当时,由,得,故a的取值范围为18、(1)(2)(3)存在,【解析】(1)由条件求出,由此求出,利用单调性求其在时的值域;(2)利用换元法,考虑轴与区间的位置关系求,(3)令,由已知可得函数,,在上有且仅有一个交点,由此列不等式求的取值范围.【小问1详解】因为函数是偶函数,故而,可得,则,故易知在上单调递增,故,;故【小问2详解】令,故;则,对称轴为①当时,在上单增,故;②当时,在上单减,在上单增,故;③当时,在上单减,故;故函数的最小值【小问3详解】由(2)知当时,;则,即令,,问题等价于两个函数与的图象在上有且只有一个交点;由,函数的图象开口向下,对称轴为,在上单调递减,在上单调递增,可图知;故【点睛】函数的零点个数与函数和的图象的交点个数相等,故可通过函数图象研究形如函数的零点问题.19、(1);(2)(i)时,,;时,,;时,,;(ii)证明部分见解析.【解析】(1)先求,的范围,再求的最大值,利用恒成立问题的方式处理;(2)分类讨论对称轴是否落在上即可;先求的最大值,需观察发现最值在取得,不要尝试用三倍角公式,另外的最大值必定在端点或者在顶点处取得,通过讨论的范围,证明即可【小问1详解】时,单调递增,于是,于是,则最大值为,又恒成立,故,注意到是正整数,于是符合要求的为.【小问2详解】(i)依题意得,为开口向上,对称轴为的二次函数,于是在上递减,在上递增,由于,,下分类讨论:当,即时,,;当,即时,,;当,即当,在上递减,,.(ii),则,当,即取等号,,,则,下令,只需说明时,即可,分类如下:当时,,且注意到,此时,显然时,单调递减,于是;当,由基本不等式,,且,,即,此时,而,时,由基本不等式,,故有:综上,时,,即当时,最小正整数【点睛】本题综合的考查了分类讨论思想,函数值域的求法等问题,特别是观察分析出的最大值,若用三倍角公式反倒会变得更加复杂.20、(1)值域为,不是有界函数;(2)【解析】(1)把代入函数的表达式,得出函数的单调区间,结合有界函数的定义进行判断;(2)由题意知,对恒成立,令,对恒成立,设,,求出单调区
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖北黄冈应急管理职业技术学院《国际商务策划》2023-2024学年第二学期期末试卷
- Unit 5 Topic 2 Section C 教学设计 2024-2025学年仁爱科普版八年级英语下册
- 比例的认识(教学设计)-2023-2024学年六年级下册数学北师大版
- 庆阳职业技术学院《工业通风与除尘》2023-2024学年第二学期期末试卷
- 宣化科技职业学院《建筑风景速写》2023-2024学年第二学期期末试卷
- 辽宁现代服务职业技术学院《食品生物化学(实验)》2023-2024学年第二学期期末试卷
- 济南2024年山东济南市章丘区社区工作者招考10人笔试历年参考题库附带答案详解
- 信阳师范大学《语文课堂教学技能》2023-2024学年第二学期期末试卷
- 济南护理职业学院《中西医结合实验诊断研究》2023-2024学年第二学期期末试卷
- 河南质量工程职业学院《结构化学C》2023-2024学年第二学期期末试卷
- 选择性必修二《Unit 4 Journey across a vast land》单元教学设计
- 2024年一年级数学下册教学计划15篇
- 2024年时事政治题(考点梳理)
- 岭南版六年级美术下册教学工作计划
- 门诊常见疾病护理常规课件
- 数字化时代的智慧课堂建设与应用
- 初中九年级美术期末艺术测评指标试卷及答案
- 药品经营质量管理制度样本
- 有机农业概述课件
- 沙子检测报告
- 2023-2024学年部编版必修下册 1-1 《子路、曾皙、冉有、公西华侍坐》教案2
评论
0/150
提交评论