版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届安徽省定远县四中高二数学第一学期期末质量跟踪监视试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知p:,那么p的一个充分不必要条件是()A. B.C. D.2.概率论起源于赌博问题.法国著名数学家布莱尔帕斯卡遇到两个赌徒向他提出的赌金分配问题:甲、乙两赌徒约定先赢满局者,可获得全部赌金法郎,当甲赢了局,乙赢了局,不再赌下去时,赌金如何分配?假设每局两人输赢的概率各占一半,每局输赢相互独立,那么赌金分配比较合理的是()A.甲法郎,乙法郎 B.甲法郎,乙法郎C.甲法郎,乙法郎 D.甲法郎,乙法郎3.若是函数的极值点,则函数()A.有最小值,无最大值 B.有最大值,无最小值C.有最小值,最大值 D.无最大值,无最小值4.阅读如图所示程序框图,运行相应的程序,输出的S的值等于()A.2 B.6C.14 D.305.已知直线的方向向量为,则直线l的倾斜角为()A.30° B.60°C.120° D.150°6.曲线:在点处的切线方程为A. B.C. D.7.命题“∀x∈R,|x|+x2≥0”的否定是()A.∀x∈R,|x|+x2<0 B.∀x∈R,|x|+x2≤0C.∃x0∈R,|x0|+<0 D.∃x0∈R,|x0|+≥08.如图,在平行六面体中,为与的交点,若,,,则的值为()A. B.C. D.9.定义域为的函数满足,且的导函数,则满足的的集合为A. B.C. D.10.某学校高二级选择“史政地”“史政生”和“史地生”组合的同学人数分别为240,120和60.现采用分层抽样的方法选出14位同学进行一项调查研究,则“史政生”组合中选出的人数为()A.8 B.6C.4 D.311.已知抛物线上一点的纵坐标为4,则点到抛物线焦点的距离为A.2 B.3C.4 D.512.已知椭圆与双曲线有相同的焦点、,椭圆的离心率为,双曲线的离心率为,点P为椭圆与双曲线的交点,且,则当取最大值时的值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知点是椭圆上的一点,分别为椭圆的左、右焦点,已知=120°,且,则椭圆的离心率为___________.14.命题“若,则”的否命题为______15.如图,四棱锥的底面是正方形,底面,为的中点,若,则点到平面的距离为___________.16.已知数列,点在函数的图象上,则数列的前10项和是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在直三棱柱中,,,,点是的中点.(1)求证:;(2)求证:平面.18.(12分)已知圆D经过点A(-1,0),B(3,0),C(1,2).(1)求圆D的标准方程;(2)若直线l:与圆D交于M、N两点,求线段MN的长度.19.(12分)已知等差数列中,,.(1)求的通项公式;(2)若,求数列的前n项和.20.(12分)已知函数(1)当在处取得极值时,求函数的解析式;(2)当的极大值不小于时,求的取值范围21.(12分)某校高二年级全体学生参加了一次数学测试,学校利用简单随机抽样的方法从甲班、乙班各抽取五名同学的数学测试成绩(单位:分)得到如下茎叶图,若甲、乙两班数据的中位数相等且平均数也相等.(1)求出茎叶图中m和n的值:(2)若从86分以上(不含86分)的同学中随机抽出两名,求此两人都来自甲班的概率.22.(10分)设等比数列的前项和为,且()(1)求数列的通项公式;(2)在与之间插入个实数,使这个数依次组成公差为的等差数列,设数列的前项和为,求证:
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】按照充分不必要条件依次判断4个选项即可.【详解】A选项:,错误;B选项:,错误;C选项:,,正确;D选项:,错误.故选:C.2、A【解析】利用独立事件计算出甲、乙各自赢得赌金的概率,由此可求得两人各分配的金额.【详解】甲赢得法郎的概率为,乙赢得法郎的概率为,因此,这法郎中分配给甲法郎,分配给乙法郎.故选:A.3、A【解析】对求导,根据极值点求参数a,再由导数研究其单调性并判断其最值情况.【详解】由题设,且,∴,可得.∴且,当时,递减;当时,递增;∴有极小值,无极大值.综上,有最小值,无最大值.故选:A4、C【解析】模拟运行程序,直到得出输出的S的值.【详解】运行程序框图,,,;,,;,,;,输出.故选:C5、B【解析】利用直线的方向向量求出其斜率,进而求出倾斜角作答.【详解】因直线的方向向量为,则直线l的斜率,直线l的倾斜角,于是得,解得,所以直线l的倾斜角为.故选:B6、A【解析】因为,所以曲线在点(1,0)处的切线的斜率为,所以切线方程为,即,选A7、C【解析】利用全称命题的否定可得出结论.【详解】由全称命题的否定可知,命题“,”的否定是“,”.故选:C.8、D【解析】将用基底表示,然后利用空间向量数量积的运算性质可求得结果.【详解】因为四边形为平行四边形,且,则为的中点,,则.故选:D9、B【解析】利用2f(x)<x+1构造函数g(x)=2f(x)-x-1,进而可得g′(x)=2f′(x)-1>0.得出g(x)的单调性结合g(1)=0即可解出【详解】令g(x)=2f(x)-x-1.因为f′(x)>,所以g′(x)=2f′(x)-1>0.所以g(x)单调增函数因为f(1)=1,所以g(1)=2f(1)-1-1=0.所以当x<1时,g(x)<0,即2f(x)<x+1.故选B.【点睛】本题主要考察导数的运算以及构造函数利用其单调性解不等式.属于中档题10、C【解析】根据题意求得抽样比,再求“史政生”组合中抽取的人数即可.【详解】根据题意,分层抽样的抽样比为,故从“史政生”组合120中,抽取的人数时人.故选:.11、D【解析】抛物线焦点在轴上,开口向上,所以焦点坐标为,准线方程为,因为点A的纵坐标为4,所以点A到抛物线准线的距离为,因为抛物线上的点到焦点的距离等于到准线的距离,所以点A与抛物线焦点的距离为5.考点:本小题主要考查应用抛物线定义和抛物线上点的性质抛物线上的点到焦点的距离,考查学生的运算求解能力.点评:抛物线上的点到焦点的距离等于到准线的距离,这条性质在解题时经常用到,可以简化运算.12、D【解析】由椭圆的定义及双曲线的定义结合余弦定理可得,,的关系,由此可得,再利用重要不等式求最值,并求此时的的值.【详解】设为第一象限的交点,、,则、,解得、,在中,由余弦定理得:,∴,∴,∴,∴,∴,,即,当且仅当,即,时等号成立,此时故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设,由余弦定理知,所以,故填.14、若,则【解析】否命题是对命题的条件和结论同时否定,同时否定和即可.命题“若,则”的否命题为:若,则考点:四种命题.15、【解析】以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可求得点到平面的距离.【详解】因为底面,,以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,则、、、,设平面的法向量为,,,则,取,可得,,所以,点到平面的距离为.故答案为:.16、【解析】将点代入可得,从而得,再由裂项相消法可求解.【详解】由题意有,所以,所以数列的前10项和为:.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析.【解析】(1)由直棱柱的性质可得,由勾股定理可得,由线面垂直判定定理即可得结果;(2)取的中点,连结和,通过线线平行得到面面,进而得结果.【详解】(1)∵直三棱柱,∴面,∴,又∵,,,∴,∴,∵,∴面,∴(2)取的中点,连结和,∵,且,∴四边形为平行四边形,∴,面,∴面,∵,且,∴四边形平行四边形,∴,面,∴面,∵,∴面面,∴平面.【点睛】方法点睛:线面平行常见的证明方法:(1)通过构造相似三角形(三角形中位线),得到线线平行;(2)通过构造平行四边形得到线线平行;(3)通过线面平行得到面面平行,再得线面平行.18、(1)(2)【解析】(1)设圆D的标准方程,利用待定系数法即可得出答案;(2)利用圆的弦长公式即可得出答案.【小问1详解】解:设圆D的标准方程,由题意可得,解得,所以圆D标准方程为;【小问2详解】解:由(1)可知圆心,半径,所以圆心D(1,0)到直线l:的距离,所以.19、(1);(2).【解析】(1)先设等差数列的公差为,由题中条件,列出方程求出首项和公差,即可得出通项公式;(2)根据(1)的结果,得到,再由等比数列的求和公式,即可得出结果.【详解】(1)设等差数列的公差为,因为,,所以,解得,所以;(2)由(1)可得,,即数列为等比数列,所以数列的前n项和.20、(1);(2).【解析】(1)对函数求导,根据求出m,并验证此时函数在x=1处取得极值,进而求得答案;(2)对函数求导,进而求出函数的单调区间和极大值,然后求出m的范围.【小问1详解】因为,所以.因为在处取得极值,所以,所以,此时,时,,单调递减,时,,单调递增,即在处取得极小值,故.【小问2详解】,令,解得.时,,单调递增,时,,单调递减,时,,单调递增.,即的取值范围是.21、(1),(2)【解析】(1)根据茎叶图得甲班中位数为,由此能求出,根据由,且,能求出.(2)甲班86分以上有2人,乙班86分以有2人,从86分以上(不含86分)的同学中随机抽出两名,用列举法写出基本事件总数,再利用古典概型的概率计算公式即可求解.【小问1详解】根据茎叶图可知1班中位数为86,则,又∵,且故【小问2详解】由(1)可知,甲班86分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 重庆三峡学院《实变函数与泛函分析》2022-2023学年第一学期期末试卷
- 重庆三峡学院《软件工程实验课》2021-2022学年第一学期期末试卷
- 重庆三峡学院《秘书写作》2021-2022学年第一学期期末试卷
- 重庆人文科技学院《电力电子技术》2023-2024学年期末试卷
- 重庆三峡学院《国际法》2021-2022学年期末试卷
- 2021招标代理专项测试题附答案
- 重庆人文科技学院《内科护理学》2023-2024学年第一学期期末试卷
- 重庆人文科技学院《康复护理学》2021-2022学年第一学期期末试卷
- 茶叶厂房设计方案
- 重庆财经学院《外汇交易理论与实务》2022-2023学年第一学期期末试卷
- 期末模拟考试03-【中职专用】《心理健康与职业生涯》(高教版2023·基础模块)(含答案)
- GB 20052-2024电力变压器能效限定值及能效等级
- 陶行知与乡村教育智慧树知到期末考试答案章节答案2024年丽水学院
- 人民调解卷宗规范化制作说明
- 手术切口感染PDCA案例
- 依托国家中小学智慧教育平台开展有效教学的研究课题申报评审书
- 烟雾病与麻醉
- 学生会团总支学期工作总结
- (2024年)食源性疾病监测培训课件
- 数字教育工具在智慧课堂中的创新应用
- 脊髓损伤课件
评论
0/150
提交评论