版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届黑龙江省孙吴县第一中学高中数学试题竞赛模拟(二)试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,它的终边过点,则的值为()A. B. C. D.2.已知函数,对任意的,,当时,,则下列判断正确的是()A. B.函数在上递增C.函数的一条对称轴是 D.函数的一个对称中心是3.中国古代用算筹来进行记数,算筹的摆放形式有纵横两种形式(如图所示),表示一个多位数时,像阿拉伯记数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,其中个位、百位、方位……用纵式表示,十位、千位、十万位……用横式表示,则56846可用算筹表示为()A. B. C. D.4.已知集合,集合,则()A. B. C. D.5.已知函数的定义域为,且,当时,.若,则函数在上的最大值为()A.4 B.6 C.3 D.86.某部队在一次军演中要先后执行六项不同的任务,要求是:任务A必须排在前三项执行,且执行任务A之后需立即执行任务E,任务B、任务C不能相邻,则不同的执行方案共有()A.36种 B.44种 C.48种 D.54种7.已知,如图是求的近似值的一个程序框图,则图中空白框中应填入A. B.C. D.8.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为()A. B. C. D.9.已知三棱锥中,为的中点,平面,,,则有下列四个结论:①若为的外心,则;②若为等边三角形,则;③当时,与平面所成的角的范围为;④当时,为平面内一动点,若OM∥平面,则在内轨迹的长度为1.其中正确的个数是().A.1 B.1 C.3 D.410.已知x,y满足不等式组,则点所在区域的面积是()A.1 B.2 C. D.11.函数满足对任意都有成立,且函数的图象关于点对称,,则的值为()A.0 B.2 C.4 D.112.函数的图象大致是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的一条渐近线为,则焦点到这条渐近线的距离为_____.14.在中,,,,则__________.15.某班有学生52人,现将所有学生随机编号,用系统抽样方法,抽取一个容量为4的样本,已知5号、31号、44号学生在样本中,则样本中还有一个学生的编号是__________.16.在面积为的中,,若点是的中点,点满足,则的最大值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)a,b,c分别为△ABC内角A,B,C的对边.已知a=3,,且B=60°.(1)求△ABC的面积;(2)若D,E是BC边上的三等分点,求.18.(12分)已知函数(),不等式的解集为.(1)求的值;(2)若,,,且,求的最大值.19.(12分)某客户准备在家中安装一套净水系统,该系统为二级过滤,使用寿命为十年如图所示两个二级过滤器采用并联安装,再与一级过滤器串联安装.其中每一级过滤都由核心部件滤芯来实现在使用过程中,一级滤芯和二级滤芯都需要不定期更换(每个滤芯是否需要更换相互独立).若客户在安装净水系统的同时购买滤芯,则一级滤芯每个160元,二级滤芯每个80元.若客户在使用过程中单独购买滤芯则一级滤芯每个400元,二级滤芯每个200元.现需决策安装净水系统的同时购买滤芯的数量,为此参考了根据100套该款净水系统在十年使用期内更换滤芯的相关数据制成的图表,其中表1是根据100个一级过滤器更换的滤芯个数制成的频数分布表,图2是根据200个二级过滤器更换的滤芯个数制成的条形图.表1:一级滤芯更换频数分布表一级滤芯更换的个数89频数6040图2:二级滤芯更换频数条形图以100个一级过滤器更换滤芯的频率代替1个一级过滤器更换滤芯发生的概率,以200个二级过滤器更换滤芯的频率代替1个二级过滤器更换滤芯发生的概率.(1)求一套净水系统在使用期内需要更换的各级滤芯总个数恰好为16的概率;(2)记表示该客户的净水系统在使用期内需要更换的二级滤芯总数,求的分布列及数学期望;(3)记分别表示该客户在安装净水系统的同时购买的一级滤芯和二级滤芯的个数.若,且,以该客户的净水系统在使用期内购买各级滤芯所需总费用的期望值为决策依据,试确定的值.20.(12分)已知数列满足,,,且.(1)求证:数列为等比数列,并求出数列的通项公式;(2)设,求数列的前项和.21.(12分)已知三棱锥P-ABC(如图一)的平面展开图(如图二)中,四边形ABCD为边长等于的正方形,和均为正三角形,在三棱锥P-ABC中:(1)证明:平面平面ABC;(2)若点M在棱PA上运动,当直线BM与平面PAC所成的角最大时,求直线MA与平面MBC所成角的正弦值.22.(10分)如图,在四棱锥中,底面,底面是直角梯形,为侧棱上一点,已知.(Ⅰ)证明:平面平面;(Ⅱ)求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
根据三角函数定义得到,故,再利用和差公式得到答案.【详解】∵角的终边过点,∴,.∴.故选:.【点睛】本题考查了三角函数定义,和差公式,意在考查学生的计算能力.2、D【解析】
利用辅助角公式将正弦函数化简,然后通过题目已知条件求出函数的周期,从而得到,即可求出解析式,然后利用函数的性质即可判断.【详解】,又,即,有且仅有满足条件;又,则,,函数,对于A,,故A错误;对于B,由,解得,故B错误;对于C,当时,,故C错误;对于D,由,故D正确.故选:D【点睛】本题考查了简单三角恒等变换以及三角函数的性质,熟记性质是解题的关键,属于基础题.3、B【解析】
根据题意表示出各位上的数字所对应的算筹即可得答案.【详解】解:根据题意可得,各个数码的筹式需要纵横相间,个位,百位,万位用纵式表示;十位,千位,十万位用横式表示,用算筹表示应为:纵5横6纵8横4纵6,从题目中所给出的信息找出对应算筹表示为中的.故选:.【点睛】本题主要考查学生的合情推理与演绎推理,属于基础题.4、C【解析】
求出集合的等价条件,利用交集的定义进行求解即可.【详解】解:∵,,∴,故选:C.【点睛】本题主要考查了对数的定义域与指数不等式的求解以及集合的基本运算,属于基础题.5、A【解析】
根据所给函数解析式满足的等量关系及指数幂运算,可得;利用定义可证明函数的单调性,由赋值法即可求得函数在上的最大值.【详解】函数的定义域为,且,则;任取,且,则,故,令,,则,即,故函数在上单调递增,故,令,,故,故函数在上的最大值为4.故选:A.【点睛】本题考查了指数幂的运算及化简,利用定义证明抽象函数的单调性,赋值法在抽象函数求值中的应用,属于中档题.6、B【解析】
分三种情况,任务A排在第一位时,E排在第二位;任务A排在第二位时,E排在第三位;任务A排在第三位时,E排在第四位,结合任务B和C不能相邻,分别求出三种情况的排列方法,即可得到答案.【详解】六项不同的任务分别为A、B、C、D、E、F,如果任务A排在第一位时,E排在第二位,剩下四个位置,先排好D、F,再在D、F之间的3个空位中插入B、C,此时共有排列方法:;如果任务A排在第二位时,E排在第三位,则B,C可能分别在A、E的两侧,排列方法有,可能都在A、E的右侧,排列方法有;如果任务A排在第三位时,E排在第四位,则B,C分别在A、E的两侧;所以不同的执行方案共有种.【点睛】本题考查了排列组合问题,考查了学生的逻辑推理能力,属于中档题.7、C【解析】
由于中正项与负项交替出现,根据可排除选项A、B;执行第一次循环:,①若图中空白框中填入,则,②若图中空白框中填入,则,此时不成立,;执行第二次循环:由①②均可得,③若图中空白框中填入,则,④若图中空白框中填入,则,此时不成立,;执行第三次循环:由③可得,符合题意,由④可得,不符合题意,所以图中空白框中应填入,故选C.8、D【解析】
试题分析:如图所示,截去部分是正方体的一个角,其体积是正方体体积的,剩余部分体积是正方体体积的,所以截去部分体积与剩余部分体积的比值为,故选D.考点:本题主要考查三视图及几何体体积的计算.9、C【解析】
由线面垂直的性质,结合勾股定理可判断①正确;反证法由线面垂直的判断和性质可判断②错误;由线面角的定义和转化为三棱锥的体积,求得C到平面PAB的距离的范围,可判断③正确;由面面平行的性质定理可得线面平行,可得④正确.【详解】画出图形:若为的外心,则,平面,可得,即,①正确;若为等边三角形,,又可得平面,即,由可得,矛盾,②错误;若,设与平面所成角为可得,设到平面的距离为由可得即有,当且仅当取等号.可得的最大值为,即的范围为,③正确;取中点,的中点,连接由中位线定理可得平面平面可得在线段上,而,可得④正确;所以正确的是:①③④故选:C【点睛】此题考查立体几何中与点、线、面位置关系有关的命题的真假判断,处理这类问题,可以用已知的定理或性质来证明,也可以用反证法来说明命题的不成立.属于一般性题目.10、C【解析】
画出不等式表示的平面区域,计算面积即可.【详解】不等式表示的平面区域如图:直线的斜率为,直线的斜率为,所以两直线垂直,故为直角三角形,易得,,,,所以阴影部分面积.故选:C.【点睛】本题考查不等式组表示的平面区域面积的求法,考查数形结合思想和运算能力,属于常考题.11、C【解析】
根据函数的图象关于点对称可得为奇函数,结合可得是周期为4的周期函数,利用及可得所求的值.【详解】因为函数的图象关于点对称,所以的图象关于原点对称,所以为上的奇函数.由可得,故,故是周期为4的周期函数.因为,所以.因为,故,所以.故选:C.【点睛】本题考查函数的奇偶性和周期性,一般地,如果上的函数满足,那么是周期为的周期函数,本题属于中档题.12、C【解析】
根据函数奇偶性可排除AB选项;结合特殊值,即可排除D选项.【详解】∵,,∴函数为奇函数,∴排除选项A,B;又∵当时,,故选:C.【点睛】本题考查了依据函数解析式选择函数图象,注意奇偶性及特殊值的用法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、2.【解析】
由双曲线的一条渐近线为,解得.求出双曲线的右焦点,利用点到直线的距离公式求解即可.【详解】双曲线的一条渐近线为解得:双曲线的右焦点为焦点到这条渐近线的距离为:本题正确结果:【点睛】本题考查了双曲线和的标准方程及其性质,涉及到点到直线距离公式的考查,属于基础题.14、1【解析】
由已知利用余弦定理可得,即可解得的值.【详解】解:,,,由余弦定理,可得,整理可得:,解得或(舍去).故答案为:1.【点睛】本题主要考查余弦定理在解三角形中的应用,属于基础题.15、18【解析】
根据系统抽样的定义和方法,所抽取的4个个体的编号成等差数列,故可根据其中三个个体的编号求出另一个个体的编号.【详解】解:根据系统抽样的定义和方法,所抽取的4个个体的编号成等差数列,已知其中三个个体的编号为5,31,44,故还有一个抽取的个体的编号为18,故答案为:18【点睛】本题主要考查系统抽样的定义和方法,属于简单题.16、【解析】
由任意三角形面积公式与构建关系表示|AB||AC|,再由已知与平面向量的线性运算、平面向量数量积的运算转化,最后由重要不等式求得最值.【详解】由△ABC的面积为得|AB||AC|sin∠BAC=,所以|AB||AC|sin∠BAC=,①又,即|AB||AC|cos∠BAC=,②由①与②的平方和得:|AB||AC|=,又点M是AB的中点,点N满足,所以,当且仅当时,取等号,即的最大值是为.故答案为:【点睛】本题考查平面向量中由线性运算表示未知向量,进而由重要不等式求最值,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)根据正弦定理,可得△ABC为直角三角形,然后可计算b,可得结果.(2)计算,然后根据余弦定理,可得,利用平方关系,可得结果.【详解】(1)△ABC中,由csinC=asinA+bsinB,利用正弦定理得c2=a2+b2,所以△ABC是直角三角形.又a=3,B=60°,所以;所以△ABC的面积为.(2)设D靠近点B,则BD=DE=EC=1.,所以所以.【点睛】本题考查正弦定理的应用,属基础题.18、(1)(2)32【解析】
利用绝对值不等式的解法求出不等式的解集,得到关于的方程,求出的值即可;由知可得,,利用三个正数的基本不等式,构造和是定值即可求出的最大值.【详解】(1)∵,,所以不等式的解集为,即为不等式的解集为,∴的解集为,即不等式的解集为,化简可得,不等式的解集为,所以,即.(2)∵,∴.又∵,,,∴,当且仅当,等号成立,即,,时,等号成立,∴的最大值为32.【点睛】本题主要考查含有两个绝对值不等式的解法和三个正数的基本不等式的灵活运用;其中利用构造出和为定值即为定值是求解本题的关键;基本不等式取最值的条件:一正二定三相等是本题的易错点;属于中档题.19、(1)0.024;(2)分布列见解析,;(3)【解析】
(1)由题意可知,若一套净水系统在使用期内需要更换的各级滤芯总个数恰好为16,则该套净水系统中一个一级过滤器需要更换8个滤芯,两个二级过滤器均需要更换4个滤芯,而由一级滤芯更换频数分布表和二级滤芯更换频数条形图可知,一级过滤器需要更换8个滤芯的概率为0.6,二级过滤器需要更换4个滤芯的概率为0.2,再由乘法原理可求出概率;(2)由二级滤芯更换频数条形图可知,一个二级过滤器需要更换滤芯的个数为4,5,6的概率分别为0.2,0.4,0.4,而的可能取值为8,9,10,11,12,然后求出概率,可得到的分布列及数学期望;(3)由,且,可知若,则,或若,则,再分别计算两种情况下的所需总费用的期望值比较大小即可.【详解】(1)由题意知,若一套净水系统在使用期内需要更换的各级滤芯总个数恰好为16,则该套净水系统中一个一级过滤器需要更换8个滤芯,两个二级过滤器均需要更换4个滤芯,设“一套净水系统在使用期内需要更换的各级滤芯总个数恰好为16”为事件,因为一个一级过滤器需要更换8个滤芯的概率为0.6,二级过滤器需要更换4个滤芯的概率为0.2,所以.(2)由柱状图知,一个二级过滤器需要更换滤芯的个数为4,5,6的概率分别为0.2,0.4,0.4,由题意的可能取值为8,9,10,11,12,从而,,.所以的分布列为891011120.040.160.320.320.16(个).或用分数表示也可以为89101112(个).(3)解法一:记表示该客户的净水系统在使用期内购买各级滤芯所需总费用(单位:元)因为,且,1°若,则,(元);2°若,则,(元).因为,故选择方案:.解法二:记分别表示该客户的净水系统在使用期内购买一级滤芯和二级滤芯所需费用(单位:元)1°若,则,的分布列为128016800.60.488010800.840.16该客户的净水系统在使用期内购买的各级滤芯所需总费用为(元);2°若,则,的分布列为800100012000.520.320.16(元).因为所以选择方案:.【点睛】此题考查离散型随机变量的分布列、数学期望的求法及应用,考查古典概型,考查运算求解能力,属于中档题.20、(1)证明见解析;(2)【解析】
(1)根据题目所给递推关系式得到,由此证得数列为等比数列,并求得其通项公式.然后利用累加法求得数列的通项公式.(2)利用错位相减求和法求得数列的前项和【详解】(1)已知,则,且,则为以3为首相,3为公比的等比数列,所以,.(2)由(1)得:,,①,②①-②可得,则即.【点睛】本小题主要考查根据递推关系式证明等比数列,考查累加法求数列的通项公式,考查错位相减求和法
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 优待证合作协议文本
- 2025版土地抵押权抵押权抵押权抵押资产证券化合同模板3篇
- 2025年度智能家居系统研发与装修设计合同2篇
- 2025年全球及中国1-戊基-1H-吲哚行业头部企业市场占有率及排名调研报告
- 2025年全球及中国汽车双面胶带行业头部企业市场占有率及排名调研报告
- 2025年全球及中国流媒体音视频产品行业头部企业市场占有率及排名调研报告
- 2025-2030全球船底喷气推进系统行业调研及趋势分析报告
- 2025年全球及中国游戏设计服务行业头部企业市场占有率及排名调研报告
- 2025年度股权代持与风险控制协议书(个人股权转让与代持)4篇
- 2025年度大学学生心理健康服务合作协议
- 2025届厦门高三1月质检期末联考数学答案
- 音乐作品录制许可
- 江苏省无锡市2023-2024学年高三上学期期终教学质量调研测试语文试题(解析版)
- 拉萨市2025届高三第一次联考(一模)英语试卷(含答案解析)
- 开题报告:AIGC背景下大学英语教学设计重构研究
- 师德标兵先进事迹材料师德标兵个人主要事迹
- 连锁商务酒店述职报告
- 石油化工企业环境保护管理制度预案
- 2024年山东省烟台市初中学业水平考试地理试卷含答案
- 《实践论》(原文)毛泽东
- 抗肿瘤治疗所致恶心呕吐护理
评论
0/150
提交评论