安徽省滁州市明光市2025届数学九上开学统考试题【含答案】_第1页
安徽省滁州市明光市2025届数学九上开学统考试题【含答案】_第2页
安徽省滁州市明光市2025届数学九上开学统考试题【含答案】_第3页
安徽省滁州市明光市2025届数学九上开学统考试题【含答案】_第4页
安徽省滁州市明光市2025届数学九上开学统考试题【含答案】_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共8页安徽省滁州市明光市2025届数学九上开学统考试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:决赛成绩/分80859095人数2864那么20名学生决赛成绩的众数和中位数分别是()A.85,90 B.85,87.5 C.90,85 D.95,902、(4分)点(1,m),(2,n)都在函数y=﹣2x+1的图象上,则m、n的大小关系是()A.m=nB.m<nC.m>nD.不确定3、(4分)如图,直线和直线相交于点,则不等式的解集为()A. B. C. D.4、(4分)如图,是正内一点,,,,将线段以点为旋转中心逆时针旋转得到线段,下列结论:①可以由绕点逆时针旋转得到;②点与点的距离为8;③;④;其中正确的结论是()A.①②③ B.①③④ C.②③④ D.①②5、(4分)图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=()度.A.270° B.300°C.360° D.400°6、(4分)某班同学在研究弹簧的长度跟外力的变化关系时,实验记录得到相应的数据如下表:砝码的质量x/g050100150200250300400500指针位置y/cm2345677.57.57.5则下列图象中,能表示y与x的函数关系的图象大致是()A. B.C. D.7、(4分)甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差s2如下表所示:甲乙丙丁平均数(cm)561560561560方差s23.53.515.516.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁8、(4分)如图,在矩形中无重叠放入面积为16和12的两张正方形纸片,则图中空白部分的面积为()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在矩形ABCD中,,,将矩形沿AC折叠,则重叠部分的面积为______.10、(4分)在一次智力抢答比赛中,四个小组回答正确的情况如下图.这四个小组平均正确回答__________道题目?(结果取整数)11、(4分)菱形ABCD的对角线cm,,则其面积等于______.12、(4分)如图,是的角平分线,交于,交于.且交于,则________度.13、(4分)如图,矩形ABCD中,,,CE是的平分线与边AB的交点,则BE的长为______.三、解答题(本大题共5个小题,共48分)14、(12分)如图,点P是正方形ABCD内一点,连接CP,将线段CP绕点C顺时针旋转90°,得线段CQ,连接BP,DQ.(1)求证:△BCP≌△DCQ;(2)延长BP交直线DQ于点E.①如图2,求证:BE⊥DQ;②若△BCP是等边三角形,请画出图形,判断△DEP的形状,并说明理由.15、(8分)解方程:x(x﹣3)=1.16、(8分)解方程:(1)x2-3x+1=1;(2)x(x+3)-(2x+6)=1.17、(10分)城有肥料吨,城有肥料吨,现要把这些肥料全部运往、两乡.从城运往、两乡运肥料的费用分别是每吨元和元,从城往、两乡运肥料的费用分别为每吨元和元,现在乡需要肥料吨,乡需要肥料吨,设城运往乡的肥料量为吨,总运费为元.(1)写出总运费元与之间的关系式;(2)当总费用为元,求从、城分别调运、两乡各多少吨?(3)怎样调运化肥,可使总运费最少?最少运费是多少?18、(10分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为多少m,小玲步行的速度为多少m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)当x=________时,分式的值为零.20、(4分)函数,则当函数值y=8时,自变量x的值是_____.21、(4分)如图,在梯形中,,对角线,且,则梯形的中位线的长为_________.22、(4分)若A(x1,y1)和B(x2,y2)在反比例函数的图象上,且0<x1<x2,则y1与y2的大小关系是y1y2;23、(4分)如图,点A,B在反比例函数y=(x>0)的图象上,点C,D在反比例函数y=(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为_____.二、解答题(本大题共3个小题,共30分)24、(8分)已知反比例函数的图像与一次函数的图像的一个交点的横坐标是-1.(1)求的值,并画出这个反比例函数的图像;(2)根据反比例函数的图像,写出当时,的取值范围.25、(10分)甲、乙两名运动员进行长跑训练,两人距终点的路程(米)与跑步时间(分)之间的函数关系如图所示,根据图象所提供的信息解答问题:(1)他们在进行米的长跑训练,在0<<15的时间内,速度较快的人是(填“甲”或“乙”);(2)求乙距终点的路程(米)与跑步时间(分)之间的函数关系式;(3)当=15时,两人相距多少米?(4)在15<<20的时间段内,求两人速度之差.26、(12分)如图,在平面直角坐标系xOy中,矩形ABCD的边AD=6,A(1,0),B(9,0),直线y=kx+b经过B、D两点.(1)求直线y=kx+b的表达式;(2)将直线y=kx+b平移,当它与矩形没有公共点时,直接写出b的取值范围.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】

根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【详解】∵85分的有8人,人数最多,∴众数为85分;∵处于中间位置的数为第10、11两个数为85分,90分,∴中位数为87.5分.故选B.本题考查了众数与中位数的意义,该组数据中出现次数最多的数为众数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,解决问题时如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.2、C【解析】

一次函数y=kx+b(k≠0)的性质,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小,根据此性质进行求解即可得.【详解】∵函数y=-2x+1中,k=-1<0,∴y随x的增大而减小,又∵1<2,∴m>n,故选C.本题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.3、C【解析】

写出直线y=kx(k≠0)在直线y=mx+n(m≠0)上方部分的x的取值范围即可.【详解】解:由图可知,不等式kx≥mx+n的解集为x≥2;故选:C.本题考查了一次函数与一元一次不等式,此类题目,利用数形结合的思想求解是解题的关键.4、A【解析】

连接OO′,如图,先利用旋转的性质得BO′=BO=8,∠OBO′=60°,再利用△ABC为等边三角形得到BA=BC,∠ABC=60°,则根据旋转的定义可判断△BO′A可以由△BOC绕点B逆时针旋转60°得到;接着证明△BOO′为等边三角形得到∠BOO′=60°,OO′=OB=8;根据旋转的性质得到AO′=OC=10,利用勾股定理的逆定理证明△AOO′为直角三角形,∠AOO′=90°,于是得到∠AOB=150°;最后利用S四边形AOBO′=S△AOO′+S△BOO′可计算出S四边形AOBO′即可判断.【详解】连接OO′,如图,

∵线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,

∴BO′=BO=8,∠OBO′=60°,

∵△ABC为等边三角形,

∴BA=BC,∠ABC=60°,

∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,则①正确;

∵△BOO′为等边三角形,

∴OO′=OB=8,所以②正确;

∵△BO′A可以由△BOC绕点B逆时针旋转60°得到,

∴AO′=OC=10,

在△AOO′中,∵OA=6,OO′=8,AO′=10,

∴OA2+OO′2=AO′2,

∴△AOO′为直角三角形,∠AOO′=90°,

∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,所以③正确;,故④错误,故选:A.本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等边三角形的判定与性质以及勾股定理的逆定理.5、C【解析】

根据多边形的外角和等于360°解答即可.【详解】由多边形的外角和等于360°可知,

∠1+∠2+∠3+∠4+∠5=360°,

故答案为:360°.本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.6、B【解析】

通过(0,2)和(100,4)利用待定系数法求出一次函数的解析式,再对比图象中的折点即可选出答案.【详解】解:由题干内容可得,一次函数过点(0,2)和(100,4).设一次函数解析式为y=kx+b,代入点(0,2)和点(100,4)可解得,k=0.02,b=2.则一次函数解析式为y=0.02x+2.显然当y=7.5时,x=275,故选B.此题主要考查函数的图象和性质,利用待定系数法求一次函数解析式.7、A【解析】试题分析:根据方差和平均数的意义找出平均数大且方差小的运动员即可.解:∵甲的方差是3.5,乙的方差是3.5,丙的方差是15.5,丁的方差是16.5,∴S甲2=S乙2<S丙2<S丁2,∴发挥稳定的运动员应从甲和乙中选拔,∵甲的平均数是561,乙的平均数是560,∴成绩好的应是甲,∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择甲;故选A.【点评】本题考查了方差和平均数.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8、B【解析】

分别表示出空白矩形的长和宽,列式计算即可.【详解】解:空白矩形的长为,宽为,∴面积=故选:B.本题考查了二次根式的计算,根据题意表示出空白矩形的边长是解题关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】

首先证明AE=CE,根据勾股定理列出关于线段AE的方程,解方程求出AE的长问题即可解决.【详解】解:由题意得:∠DCA=∠ACE,∵四边形ABCD为矩形,∴DC//AB,∠B=90°,∴∠DCA=∠CAE,∴∠CAE=∠ACE,∴AE=CE(设为x),则BE=8-x,由勾股定理得:x2=(8-x)2+42,解得:x=5,∴S△AEC=×5×4=1,故答案为1.本题考查了矩形的性质、折叠的性质、勾股定理的应用等,熟练掌握和灵活运用相关的性质及定理是解题的关键.本题也要注意数形结合思想的运用.10、1【解析】

先求出四个小组回答的总题目数,然后除以4即可.【详解】解:这四个小组平均正确回答题目数(8+1+16+10)≈1(道),

故答案为:1.本题考查的是条形统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.11、【解析】

根据菱形的性质,菱形的面积等于两条对角线乘积的一半,代入数值计算即可。【详解】解:菱形ABCD的面积===本题考查了菱形的性质:菱形的面积等于两条对角线乘积的一半。12、【解析】

先根据平行四边形的判定定理得出四边形AEDF为平行四边形,再根据平行线的性质及角平分线的性质得出∠1=∠3,故可得出▱AEDF为菱形,根据菱形的性质即可得出.【详解】如图所示:∵DE∥AC,DF∥AB,

∴四边形AEDF为平行四边形,

∴OA=OD,OE=OF,∠2=∠3,

∵AD是△ABC的角平分线,

∵∠1=∠2,

∴∠1=∠3,

∴AE=DE.

∴▱AEDF为菱形.

∴AD⊥EF,即∠AOF=1°.

故答案是:1.考查的是菱形的判定与性质,根据题意判断出四边形AEDF是菱形是解答此题的关键.13、

【解析】分析:作于由≌,推出,,,设,则,在中,根据,构建方程求出x即可;详解:作于H.四边形ABCD是矩形,,,在和中,,≌,,,,设,则,在中,,,,,故答案为:.点睛:本题考查矩形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.三、解答题(本大题共5个小题,共48分)14、(1)证明见解析;(2)①证明见解析;②作图见解析;△DEP为等腰直角三角形,理由见解析.【解析】

(1)根据旋转的性质证明∠BCP=∠DCQ,得到△BCP≌△DCQ;(2)①根据全等的性质和对顶角相等即可得到答案;②根据等边三角形的性质和旋转的性质求出∠EPD=45°,∠EDP=45°,判断△DEP的形状.【详解】(1)证明:∵∠BCD=90°,∠PCQ=90°,∴∠BCP=∠DCQ,在△BCP和△DCQ中,,∴△BCP≌△DCQ;(2)①如图b,∵△BCP≌△DCQ,∴∠CBF=∠EDF,又∠BFC=∠DFE,∴∠DEF=∠BCF=90°,∴BE⊥DQ;②画图如下,∵△BCP为等边三角形,∴∠BCP=60°,∴∠PCD=30°,又CP=CD,∴∠CPD=∠CDP=75°,又∠BPC=60°,∠CDQ=60°,∴∠EPD=45°,∠EDP=45°,∴△DEP为等腰直角三角形.本题考查的是正方形的性质、三角形全等的判定和性质以及旋转的性质,掌握正方形的四条边相等、四个角都是直角,旋转的性质是解题的关键.15、x2=2,x2=﹣2【解析】

把方程化成一般形式,用十字相乘法因式分解求出方程的根.【详解】解:x2﹣3x﹣2=0(x﹣2)(x+2)=0x﹣2=0或x+2=0∴x2=2,x2=﹣2.本题考查了一元二次方程的解法,根据题目特点,可以灵活选择合适的方法进行解答,使计算变得简单.16、(4)x4=,x2=;(2)x4=-3,x2=2.【解析】试题分析:(4)直接利用公式法求出x的值即可;(2)先把原方程进行因式分解,再求出x的值即可.试题解析:(4)∵一元二次方程x2-3x+4=4中,a=4,b=-3,c=4,∴△=b2-4ac=(-3)2-4×4×4=3.∴x=.即x4=,x2=;(2)∵因式分解得(x+3)(x-2)=4,∴x+3=4或x-2=4,解得x4=-3,x2=2.考点:4.解一元二次方程-因式分解法;2.解一元二次方程-公式法.17、(1);(2)城运往乡的肥料量为吨,城运往乡的肥料量为吨,城运往的肥料量分别为吨,城运往的肥料量分别为吨;(3)从城运往乡吨,运往乡吨;从城运往乡吨,运往乡吨,此时总运费最少,总运费最小值是元【解析】

(1)设C城运往A乡的化肥为x吨,表示出A城运往D乡的化肥为吨,B城运往C乡的化肥为吨,B城运往D乡的化肥为吨,总运费为y,然后根据总运费的表达式列式整理,再根据运往各地的肥料数不小于0列式求出x的取值范围即可.(2)将代入(1)中求得的关系式,即可完成.(3)利用(1)中求得的关系式,根据一次函数的增减性解答即可.【详解】解:(1)设总运费为元,城运往乡的肥料量为吨,则运往乡的肥料量为吨;城运往C、D乡的肥料量分别为吨和吨.由总运费与各运输量的关系可知,反映与之间的函数关系为化简,得(2)将代入得:,解得:,,,,从城运往乡的肥料量为吨,城运往乡的肥料量为吨,城运往的肥料量分别为吨,城运往的肥料量分别为吨.(3),,随的增大而增大,当时,从城运往乡吨,运往乡吨;从城运往乡吨,运往乡吨,此时总运费最少,总运费最小值是元.本题考查了一次函数的应用,主要是运用待定系数法求关系式以及利用一次函数的增减性求最值问题,难点在于表示出运往各地的化肥吨数.18、(1)家与图书馆之间路程为4000m,小玲步行速度为100m/s;(2)自变量x的范围为0≤x≤;(3)两人相遇时间为第8分钟.【解析】

(1)认真分析图象得到路程与速度数据;(2)采用方程思想列出小东离家路程y与时间x之间的函数关系式;(3)两人相遇实际上是函数图象求交点.【详解】解:(1)结合题意和图象可知,线段CD为小东路程与时间函数图象,折现O﹣A﹣B为小玲路程与时间图象则家与图书馆之间路程为4000m,小玲步行速度为(4000-2000)÷(30-10)=100m/s(2)∵小东从离家4000m处以300m/min的速度返回家,则xmin时,∴他离家的路程y=4000﹣300x,自变量x的范围为0≤x≤,(3)由图象可知,两人相遇是在小玲改变速度之前,∴4000﹣300x=200x解得x=8∴两人相遇时间为第8分钟.故答案为(1)4000,100;(2)y=4000﹣300x,0≤x≤;(3)第8分钟.本题考查了一次函数的应用,解决本题的关键是能从函数的图象中获取相关信息.一、填空题(本大题共5个小题,每小题4分,共20分)19、3【解析】

根据分式值为0的条件:分子为0,分母不为0,即可得答案.【详解】∵分式的值为零,∴x-3=0,x+5≠0,解得:x=3,故答案为:3本题考查分式值为0的条件,要使分式值为0,则分子为0,分母不为0;熟练掌握分式值为0的条件是解题关键.20、或4【解析】

把y=8直接代入函数即可求出自变量的值.【详解】把y=8直接代入函数,得:,∵,∴代入,得:x=4,所以自变量x的值为或4本题比较容易,考查求函数值.(1)当已知函数解析式时,求函数值就是求代数式的值;(2)函数值是唯一的,而对应的自变量可以是多个.21、1【解析】

解:过C作CE∥BD交AB的延长线于E,

∵AB∥CD,CE∥BD,

∴四边形DBEC是平行四边形,

∴CE=BD,BE=CD

∵等腰梯形ABCD中,AC=BD∴CE=AC

∵AC⊥BD,CE∥BD,

∴CE⊥AC

∴△ACE是等腰直角三角形,

∵AC=,

∴AE=AC=10,∴AB+CD=AB+BE=10,

∴梯形的中位线=AE=1,

故答案为:1.本题考查了梯形的中位线定理,牢记定理是解答本题的重点,难点是题目中的辅助线的做法.22、>;【解析】试题解析:∵反比例函数中,系数∴反比例函数在每个象限内,随的增大而减小,∴当时,故答案为23、1【解析】

过A作x轴垂线,过B作x轴垂线,求出A(1,1),B(2,),C(1,k),D(2,),将面积进行转换S△OAC=S△COM﹣S△AOM,S△ABD=S梯形AMND﹣S梯形AAMNB进而求解.【详解】解:过A作x轴垂线,过B作x轴垂线,点A,B在反比例函数y=(x>0)的图象上,点A,B的横坐标分别为1,2,∴A(1,1),B(2,),∵AC∥BD∥y轴,∴C(1,k),D(2,),∵△OAC与△ABD的面积之和为,,S△ABD=S梯形AMND﹣S梯形AAMNB,,∴k=1,故答案为1.本题考查反比例函数的性质,k的几何意义.能够将三角形面积进行合理的转换是解题的关键.二、解答题(本大题共3个小题,共30分)24、(1),图像见解析,(2).【解析】

(1)根据题意,先将代入一次函数,求得,即可求得交点坐标,再将交点坐标代入反比例函数解析式,即可求得,根据描点法即可画出图像;(2)将,代入反比例函数解析式,即可求得值,当时,观察图像即可求得的取值范围.【详解】解:(1)根据题意,将代入,解得,∴交点坐标为(-1,-2),再代入反比例函数中,解得,∴反比例函数解析式为,列出几组、的对应值:描点连线,即可画出函数图像,如图:(2)当时,,根据图像可知,当时,.故当时,的取值范围是.本题考查一次函数与反比例函数的综合,难度不大,是中考的常考知识点,理解交点的含义并正确画出函数图形是顺利解题的关键.25、(1)5

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论