河北省省级示范高中联合体2025届数学高二上期末学业质量监测试题含解析_第1页
河北省省级示范高中联合体2025届数学高二上期末学业质量监测试题含解析_第2页
河北省省级示范高中联合体2025届数学高二上期末学业质量监测试题含解析_第3页
河北省省级示范高中联合体2025届数学高二上期末学业质量监测试题含解析_第4页
河北省省级示范高中联合体2025届数学高二上期末学业质量监测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省省级示范高中联合体2025届数学高二上期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.点是正方体的底面内(包括边界)的动点.给出下列三个结论:①满足的点有且只有个;②满足的点有且只有个;③满足平面的点的轨迹是线段.则上述结论正确的个数是()A. B.C. D.2.由直线上的点向圆引切线,则切线长的最小值为()A. B.C.4 D.23.已知函数的图象是下列四个图象之一,且其导函数的图象如图所示,则该函数的图象是()A. B.C. D.4.已知,若对于且都有成立,则实数的取值范围是()A. B.C. D.5.已知直线,椭圆.若直线l与椭圆C交于A,B两点,则线段AB的中点的坐标为()A. B.C. D.6.在等差数列{}中,,,则的值为()A.18 B.20C.22 D.247.已知双曲线的右焦点为,以为圆心,以为半径的圆与双曲线的一条渐近线交于,两点,若(为坐标原点),则双曲线的离心率为().A. B.C. D.8.在空间直角坐标系中,点关于轴的对称点为点,则点到直线的距离为()A. B.C. D.69.某班级从5名同学中挑出2名同学进行大扫除,若小王和小张在这5名同学之中,则小王和小张都没有被挑出的概率为()A. B.C. D.10.过,两点的直线的一个方向向量为,则()A.2 B.2C.1 D.111.在等比数列中,若是函数的极值点,则的值是()A. B.C. D.12.将函数图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,再将所得图象向右平移个单位长度,得到函数的图象,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则不等式的解集为____________14.在等差数列中,,公差,则_________15.已知函数,则f(e)=__.16.方程表示双曲线,则实数k的取值范围是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆心为的圆过原点,且直线与圆相切于点.(1)求圆的方程;(2)已知过点的直线的斜率为,且直线与圆相交于两点.①若,求弦的长;②若圆上存在点,使得成立,求直线的斜率.18.(12分)已知函数,当时,有极大值3(1)求的值;(2)求函数的极小值19.(12分)已知点,,设动点P满足直线PA与PB的斜率之积为,记动点P的轨迹为曲线E(1)求曲线E的方程;(2)若动直线l经过点,且与曲线E交于C,D(不同于A,B)两点,问:直线AC与BD的斜率之比是否为定值?若为定值,求出该定值;若不为定值,请说明理由20.(12分)新冠肺炎疫情发生以来,我国某科研机构开展应急科研攻关,研制了一种新型冠状病毒疫苗,并已进入二期临床试验.根据普遍规律,志愿者接种疫苗后体内会产生抗体,人体中检测到抗体,说明有抵御病毒的能力.通过检测,用表示注射疫苗后的天数,表示人体中抗体含量水平(单位:,即:百万国际单位/毫升),现测得某志愿者的相关数据如下表所示:天数123456抗体含量水平510265096195根据以上数据,绘制了散点图.(1)根据散点图判断,与(a,b,c,d均为大于0的实数)哪一个更适宜作为描述y与x关系的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果求出y关于x的回归方程,并预测该志愿者在注射疫苗后的第10天的抗体含量水平值;(3)从这位志愿者前6天的检测数据中随机抽取4天的数据作进一步的分析,记其中的y值大于50的天数为X,求X的分布列与数学期望.参考数据:3.5063.673.4917.509.4912.95519.014023.87其中.参考公式:用最小二乘法求经过点,,,,的线性回归方程的系数公式,;.21.(12分)已知函数.(1)若在上单调递增,求的取值范围;(2)若在上存在极值点,证明:.22.(10分)设,分别是椭圆()的左、右焦点,E的离心率为.短轴长为2.(1)求椭圆E的方程:(2)过点的直线l交椭圆E于A,B两点,是否存在实数t,使得恒成立?若存在,求出t的值;若不存在,说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】对于①,根据线线平行的性质可知点即为点,因此可判断①正确;对于②,根据线面垂直的判定可知平面,,由此可判定的位置,进而判定②的正误;对于③,根据面面平行可判定平面平面,因此可判断此时一定落在上,由此可判断③的正误.【详解】如图:对于①,在正方体中,,若异于,则过点至少有两条直线和平行,这是不可能的,因此底面内(包括边界)满足的点有且只有个,即为点,故①正确;对于②,正方体中,平面,平面,所以,又,所以,而,平面,故平面,因此和垂直的直线一定落在平面内,由是平面上的动点可知,一定落在上,这样的点有无数多个,故②错误;对于③,,平面,则平面,同理平面,而,所以平面平面,而平面,所以一定落在平面上,由是平面上的动点可知,此时一定落在上,即点的轨迹是线段,故③正确,故选:C.2、D【解析】切点与圆心的连线垂直于切线,切线长转化为直线上点与圆心连线和半径的关系,利用点到直线的距离公式求出圆心与直线上点距离的最小值,结合勾股定理即可得出结果.【详解】设为直线上任意一点,,切线长的最小值为:,故选:D.3、A【解析】利用导数与函数的单调性之间的关系及导数的几何意义即得.【详解】由函数f(x)的导函数y=f′(x)的图像自左至右是先减后增,可知函数y=f(x)图像的切线的斜率自左至右先减小后增大,且,在处的切线的斜率为0,故BCD错误,A正确.故选:A.4、D【解析】根据题意转化为对于且时,都有恒成立,构造函数,转化为时,恒成立,求得的导数,转化为在上恒成立,即可求解.【详解】由题意,对于且都有成立,不妨设,可得恒成立,即对于且时,都有恒成立,构造函数,可转化为,函数为单调递增函数,所以当时,恒成立,又由,所以在上恒成立,即在上恒成立,又由,所以,即实数取值范围为.故选:D5、B【解析】联立直线方程与椭圆方程,消y得到关于x的一元二次方程,根据韦达定理可得,进而得出中点的横坐标,代入直线方程求出中点的纵坐标即可.【详解】由题意知,,消去y,得,则,,所以A、B两点中点的横坐标为:,所以中点的纵坐标为:,即线段AB的中点的坐标为.故选:B6、B【解析】根据等差数列通项公式相关计算求出公差,进而求出首项.【详解】设公差为,由题意得:,解得:,所以.故选:B7、A【解析】设双曲线的一条渐近线方程为,为的中点,可得,由,可知为的三等分点,用两种方式表示,可得关于的方程组,结合即可得到双曲线的离心率.【详解】设双曲线的一条渐近线方程为,为的中点,可得,由到渐近线的距离为,所以,又,所以,因为,所以,整理可得:,即,所以,可得,所以,所以双曲线的离心率为,故选:A.8、C【解析】按照空间中点到直线的距离公式直接求解.【详解】由题意,,,的方向向量,,则点到直线的距离为.故选:C.9、B【解析】记另3名同学分别为a,b,c,应用列举法求古典概型的概率即可.【详解】记另3名同学分别为a,b,c,所以基本事件为,,(a,小王),(a,小张),,(b,小王),(b,小张),(c,小王),(c,小张),(小王,小张),共10种小王和小张都没有被挑出包括的基本事件为,,,共3种,综上,小王和小张都没有挑出的概率为故选:B.10、C【解析】应用向量的坐标表示求的坐标,由且列方程求y值.【详解】由题设,,则且,所以,即,可得.故选:C11、B【解析】根据导数的性质求出函数的极值点,再根据等比数列的性质进行求解即可.【详解】,当时,单调递增,当时,单调递减,当时,单调递增,所以是函数的极值点,因为,且所以,故选:B12、A【解析】根据三角函数图象的变换,由逆向变换即可求解.【详解】由已知的函数逆向变换,第一步,向左平移个单位长度,得到的图象;第二步,图象上所有点的横坐标缩短到原来的,纵坐标不变,得到的图象,即的图象.故.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】易得函数为奇函数,则不等式即为不等式,利用导数判断函数得单调性,再根据函数得单调性解不等式即可.【详解】解:函数得定义域为R,因为,所以函数为奇函数,则不等式即为不等式,,所以函数在R上是增函数,所以,解得,即不等式的解集为.故答案为:.14、15【解析】由等差数列通项公式直接可得.【详解】.故答案为:1515、【解析】由导数得出,再求.【详解】∵,∴,,解得,,,故答案为:.16、【解析】由题可得,即求.【详解】∵方程表示双曲线,∴,∴.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)①,②.【解析】(1)圆心在线段的垂直平分线上,圆心也在过点且与垂直的直线上,联立求圆心,进而得半径即可;(2)①垂径定理即可求弦长;②圆上存在点,使得成立,即四边形是平行四边形,又,有都是等边三角形,进而得圆心到直线的距离为,列方程求解即可.试题解析:(1)由已知得,圆心在线段的垂直平分线上,圆心也在过点且与垂直的直线上,由得圆心,所以半径,所以圆的方程为;(2)①由题意知,直线的方程为,即,∴圆心到直线的距离为,∴;②∵圆上存在点,使得成立,∴四边形是平行四边形,又,∴都是等边三角形,∴圆心到直线的距离为,又直线的方程为,即,∴,解得.18、(1);(2)0【解析】(1)由题意得,则可得到关于实数的方程组,求解方程组,即可求得的值;(2)结合(1)中的值得出函数的解析式,即可利用导数求得函数的极小值.【详解】(1),当时,有极大值3,所以,解得,经检验,满足题意,所以;(2)由(1)得,则,令,得或,列表得极小值极大值易知是函数的极小值点,所以当时,函数有极小值0【点睛】本题主要考查了函数的极值的概念,以及利用导数求解函数的极值,考查了学生对极值概念的理解与运算求解能力.19、(1);(2)直线AC和BD的斜率之比为定值【解析】(1)设,依据两点的斜率公式可求得曲线E的方程(2)设直线l:,,,联立方程得,得出根与系数的关系,表示直线AC的斜率,直线BD的斜率,并代入计算,可得其定值.【详解】解:(1)设,依题意可得,所以,所以曲线E的方程为(2)依题意,可设直线l:,,,由,可得,则,,因为直线AC的斜率,直线BD的斜率,因为,所以,所以直线AC和BD的斜率之比为定值20、(1)(2),4023.87(3)分布列答案见解析,数学期望:【解析】(1)由于这些点分布在一条曲线的附近,从而可选出回归方程,(2)设,,则建立w关于x的回归方程,然后根据公式和表中的数据求解回归方程即可,再将代入回归方程可求得在注射疫苗后的第10天的抗体含量水平值,(3)由题意可知x的可能取值为0,1,2,然后求对应的概率,从而可求出分布列和期望【小问1详解】根据散点图可知这些点分布在一条曲线的附近,所以更适合作为描述y与x关系的回归方程类型.【小问2详解】设,变换后可得,设,建立w关于x的回归方程,,所以所以w关于x的回归方程为,所以,当时,,即该志愿者在注射疫苗后的第10天的抗体含量水平值约为4023.87miu/mL.【小问3详解】由表格数据可知,第5,6天的y值大于50,故x的可能取值为0,1,2,,,,X的分布列为012.21、(1)(2)证明见解析【解析】(1)由题得,在,上为单调递增的函数,在,上恒成立,分类讨论,再次利用导数研究函数的最值即可;(2)由(1)可知,在存在极值点,则且,求得,再两次求导即可得结论.【小问1详解】由题得,在,上为单调递增的函数,在,上恒成立,设,当时,由,得,在,上为增函数,则,在,上恒成立,满足命题,当时,由,得,在上为减函数,,时,,即,不满足恒成立,不成立,综上:的取值范围为.小问2详解】证明:由(1)可知,在存在极值点,则且即:要证只需证即证又由(1)可知在上为增函数,且,成立.要证只需证即证:设则即在上增函数在为增函数成立.综上,成立.22、(1)(2)存在,【解析】(1)由条件列出,,的方程,解方程求出,,,由此可得椭圆E的方程:(2)当直线的斜率存在时,设直线的方程为,联立直线的方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论