2025届天津市宝坻一中等七校高二上数学期末教学质量检测模拟试题含解析_第1页
2025届天津市宝坻一中等七校高二上数学期末教学质量检测模拟试题含解析_第2页
2025届天津市宝坻一中等七校高二上数学期末教学质量检测模拟试题含解析_第3页
2025届天津市宝坻一中等七校高二上数学期末教学质量检测模拟试题含解析_第4页
2025届天津市宝坻一中等七校高二上数学期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届天津市宝坻一中等七校高二上数学期末教学质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.()A. B.C. D.2.在中,角A,B,C所对的边分别为a,b,c,已知,则的面积为()A. B.C. D.3.准线方程为的抛物线的标准方程为()A. B.C. D.4.在等差数列中,若,则()A.6 B.9C.11 D.245.已知倾斜角为的直线与双曲线,相交于,两点,是弦的中点,则双曲线的渐近线的斜率是()A. B.C. D.6.已知点是椭圆上一点,点,则的最小值为A. B.C. D.7.如图,在三棱锥中,是线段的中点,则()A. B.C. D.8.已知三棱柱的所有棱长均为2,平面,则异面直线,所成角的余弦值为()A. B.C. D.9.4位同学报名参加四个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()A.24种 B.81种C.64种 D.256种10.已知函数在上单调递增,则实数a的取值范围为()A. B.C. D.11.已知分别是等差数列的前项和,且,则()A. B.C. D.12.阅读如图所示的程序框图,运行相应的程序,输出S的结果是()A.128 B.64C.16 D.32二、填空题:本题共4小题,每小题5分,共20分。13.如图,在长方体中,,,则直线与平面所成角的正弦值为__________.14.已知三角形OAB顶点,,,则过B点的中线长为______.15.圆锥曲线有良好的光学性质,光线从椭圆的一个焦点发出,被椭圆反射后会经过椭圆的另一个焦点(如左图);光线从双曲线的一个焦点发出,被双曲线反射后的反射光线等效于从另一个焦点射出(如中图).封闭曲线E(如右图)是由椭圆C1:+=1和双曲线C2:-=1在y轴右侧的一部分(实线)围成.光线从椭圆C1上一点P0出发,经过点F2,然后在曲线E内多次反射,反射点依次为P1,P2,P3,P4,…,若P0,P4重合,则光线从P0到P4所经过的路程为_________.16.已知数列{an}满足an+2=an+1-an(n∈N*),且a1=2,a2=3,则a2022的值为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某城市户居民的月平均用电量(单位:度),以,,,,,,分组的频率分布直方图如图(1)求直方图中的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,,,的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?18.(12分)设等差数列的前项和为(1)求的通项公式;(2)求数列的前项和19.(12分)已知等比数列前3项和为(1)求的通项公式;(2)若对任意恒成立,求m的取值范围20.(12分)在三棱柱中,侧面正方形的中心为点平面,且,点满足(1)若平面,求的值;(2)求点到平面的距离;(3)若平面与平面所成角的正弦值为,求的值21.(12分)某公司举办捐步公益活动,参与者通过捐赠每天运动步数获得公司提供的牛奶,再将牛奶捐赠给留守儿童.此活动不但为公益事业作出了较大的贡献,还为公司获得了相应的广告效益,据测算,首日参与活动人数为5000人,以后每天人数比前一天都增加15%,30天后捐步人数稳定在第30天的水平,假设此项活动的启动资金为20万元,每位捐步者每天可以使公司收益0.05元(以下人数精确到1人,收益精确到1元)(1)求活动开始后第5天的捐步人数,及前5天公司的捐步总收益;(2)活动开始第几天以后公司的捐步总收益可以收回启动资金并有盈余?22.(10分)已知椭圆的一个顶点恰好是抛物线的焦点,椭圆C的离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)从椭圆C在第一象限内的部分上取横坐标为2的点P,若椭圆C上有两个点A,B使得的平分线垂直于坐标轴,且点B与点A的横坐标之差为,求直线AP的方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据微积分基本定理即可直接求出答案.【详解】故选:B.2、A【解析】由余弦定理计算求得角,根据三角形面积公式计算即可得出结果.【详解】由余弦定理得,,∴,∴,故选:A3、D【解析】的准线方程为.【详解】的准线方程为.故选:D.4、B【解析】根据等差数列的通项公式的基本量运算求解【详解】设的公差为d,因为,所以,又,所以故选:B5、A【解析】依据点差法即可求得的关系,进而即可得到双曲线的渐近线的斜率.【详解】设,则由,可得则,即,则则双曲线的渐近线的斜率为故选:A6、D【解析】设,则,.所以当时,的最小值为.故选D.7、A【解析】根据给定几何体利用空间向量基底结合向量运算计算作答.【详解】在三棱锥中,是线段的中点,所以:.故选:A8、A【解析】建立空间直角坐标系,利用向量法求解【详解】以为坐标原点,平面内过点且垂直于的直线为轴,所在直线为轴,所在直线为轴建立空间直角坐标系,如图所示,则,,,,∴,,∴,∴异面直线,所成角的余弦值为.故选:A9、D【解析】利用分步乘法计数原理进行计算.【详解】每位同学均有四种选择,故不同的报名方法有种.故选:D10、D【解析】根据题意参变分离得到,求出的最小值,进而求出实数a的取值范围.【详解】由题意得:在上恒成立,即,其中在处取得最小值,,所以,解得:,故选:D11、D【解析】利用及等差数列的性质进行求解.【详解】分别是等差数列的前项和,故,且,故,故选:D12、C【解析】根据程序框图的循环逻辑写出执行步骤,即可确定输出结果.【详解】根据流程图的执行逻辑,其执行步骤如下:1、成立,则;2、成立,则;3、成立,则;4、成立,则;5、不成立,输出;故选:C二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】过作,垂足为,则平面,则即为所求角,从而可得结果.【详解】依题意,画出图形,如图,过作,垂足为,可知点H为中点,由平面,可得,又所以平面,则即为所求角,因为,,所以,故答案为:.14、【解析】先求出中点坐标,再由距离公式得出过B点的中线长.【详解】由中点坐标公式可得中点,则过B点的中线长为.故答案为:15、【解析】结合椭圆、双曲线的定义以及它们的光学性质求得正确答案.【详解】椭圆;双曲线,双曲线和椭圆的焦点重合.根据双曲线的定义有,所以①,②,根据椭圆的定义由,所以路程.故答案为:16、【解析】根据递推关系求出数列的前几项,得周期性,然后可得结论【详解】由题意,,,,,,所以数列是周期数列,周期为6,所以故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2),;(3)【解析】(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得;(2)由直方图中众数为最高矩形上端的中点可得,可得中位数在[220,240)内,设中位数为a,解方程(0.002+0.0095+0.011)×20+0.0125×(a-220)=0.5可得;(3)可得各段的用户分别为25,15,10,5,可得抽取比例,可得要抽取的户数试题解析:(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1得:x=0.0075,所以直方图中x的值是0.0075.-------------3分(2)月平均用电量的众数是=230.-------------5分因为(0.002+0.0095+0.011)×20=0.45<0.5,所以月平均用电量的中位数在[220,240)内,设中位数为a,由(0.002+0.0095+0.011)×20+0.0125×(a-220)=0.5得:a=224,所以月平均用电量的中位数是224.------------8分(3)月平均用电量为[220,240)的用户有0.0125×20×100=25户,月平均用电量为[240,260)的用户有0.0075×20×100=15户,月平均用电量为[260,280)的用户有0.005×20×100=10户,月平均用电量为[280,300]的用户有0.0025×20×100=5户,-------------10分抽取比例==,所以月平均用电量在[220,240)的用户中应抽取25×=5户.--12分考点:频率分布直方图及分层抽样18、(1);(2).【解析】(1)根据等差数列前n项和求和公式求出首项和公差,进而求出通项公式;(2)结合(1)求出,再令得出数列的正数项和负数项,进而结合等差数列求和公式求得答案.【小问1详解】设等差数列的首项和公差分别为和,∴,解得:所以.【小问2详解】,所以.当;当,当,时,,当时,.综上:.19、(1)(2)【解析】(1)由等比数列的基本量,列式,即可求得首项和公比,再求通项公式;(2)由题意转化为求数列的前项和的最大值,即可求参数的取值范围.【小问1详解】设等比数列的公比为,则,①,即,得,即,代入①得,解得:,所以;【小问2详解】由(1)可知,数列是首项为2,公比为的等比数列,,若对任意恒成立,即,数列,,单调递增,的最大值无限趋近于4,所以20、(1);(2);(3)或.【解析】(1)连接ME,证明即可计算作答.(2)以为原点,的方向分别为轴正方向建立空间直角坐标系,借助空间向量计算点到平面的距离即可.(3)由(2)中空间直角坐标系,借助空间向量求平面与平面所成角的余弦即可计算作答.【小问1详解】在三棱柱中,因,即点在上,连接ME,如图,因平面面,面面,则有,而为中点,于是得为的中点,所以.【小问2详解】在三棱柱中,面面,则点到平面的距离等于点到平面的距离,又为正方形,即,而平面,以为原点,的方向分别为轴正方向建立空间直角坐标系,如图,依题意,,则,,设平面的法向量为,则,令,得,又,则到平面的距离,所以点到平面的距离为.【小问3详解】因,则,,设面的法向量为,则,令,得,于是得,而平面与平面所成角的正弦值为,则,即,整理得,解得或,所以的值是或.【点睛】易错点睛:空间向量求二面角时,一是两平面的法向量的夹角不一定是所求的二面角,二是利用方程思想进行向量运算,要认真细心,准确计算.21、(1)8745,1686元(2)37天【解析】(1)根据等比数列的性质求出结果;(2)对活动天数进行讨论,列出不等式求出的范围即可.【小问1详解】设第天的捐步人数为,则且,∴第5天的捐步人数为由题意可知前5天的捐步人数成等比数列,其中首项为5000,公比为1.15,∴前5天的捐步总收益为元.【小问2详解】设活动第天后公司捐步总收益可以回收并有盈余,若,则,解得(舍)若,则,解得∴活动开始后第37天公司的捐步总收益可以收回启动资金并有盈余.22、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由题意可得关于参数的方程,解之即可得到结果;(Ⅱ)设直线AP的斜率为k,联立方程结合韦达定理可得A点坐标,同理可得B点坐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论