版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届云南省永仁县一中数学高二上期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“”是“”的()A.充分不必要条件 B.必要不充分条件C充分必要条件 D.既不充分也不必要条件2.已知等比数列中,,,则首项()A. B.C. D.03.抛物线的焦点坐标是A. B.C. D.4.若定义在R上的函数满足,则不等式的解集为()A. B.C. D.5.若直线与圆相交于、两点,且(其中为原点),则的值为()A. B.C. D.6.设是数列的前项和,已知,则数列()A.是等比数列,但不是等差数列 B.是等差数列,但不是等比数列C.是等比数列,也是等差数列 D.既不是等差数列,也不是等比数列7.已知圆与抛物线的准线相切,则实数p的值为()A.2 B.6C.3或8 D.2或68.已知直线与平行,则系数()A. B.C. D.9.连续抛掷一枚均匀硬币3次,事件“至少2次出现正面”的对立事件是()A.只有2次出现反面 B.至少2次出现正面C.有2次或3次出现正面 D.有2次或3次出现反面10.两个圆和的位置是关系是()A.相离 B.外切C.相交 D.内含11.若,,则下列各式中正确的是()A. B.C. D.12.命题“存在,使得”的否定为()A.存在, B.对任意,C.对任意, D.对任意,二、填空题:本题共4小题,每小题5分,共20分。13.等差数列中,若,,则______,数列的前n项和为,则______14.已知是定义在上的奇函数,当时,则当时___________.15.已知茎叶图记录了甲、乙两组各名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为,乙组数据的平均数为,则的值为__________.甲组乙组16.矩形ABCD中,,在CD边上任取一点M,则的最大边是AB的概率为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆:,定点,A是圆上的一动点,线段的垂直平分线交半径于P点(1)求P点的轨迹C的方程;(2)设直线过点且与曲线C相交于M,N两点,不经过点.证明:直线MQ的斜率与直线NQ的斜率之和为定值18.(12分)已知抛物线的焦点F到准线的距离为2(1)求C的方程;(2)已知O为坐标原点,点P在C上,点Q满足,求直线斜率最大值.19.(12分)已知,C是圆B:(B是圆心)上一动点,线段AC的垂直平分线交BC于点P(1)求动点P的轨迹的方程;(2)设E,F为与x轴的两交点,Q是直线上动点,直线QE,QF分别交于M,N两点,求证:直线MN过定点20.(12分)设点,动圆P经过点F且和直线相切,记动圆的圆心P的轨迹为曲线W(1)求曲线W的方程;(2)直线与曲线W交于A、B两点,其中O为坐标原点,已知点T的坐标为,记直线TA,TB的斜率分别为,,则是否为定值,若是求出,不是说明理由21.(12分)在空间直角坐标系Oxyz中,O为原点,已知点,,,设向量,.(1)求与夹角的余弦值;(2)若与互相垂直,求实数k的值.22.(10分)如图,在正方体中,E为的中点(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据充分条件和必要条件的定义直接判断即可.【详解】若,则,即或,推不出;反过来,若,可推出.故“”是“”的充分不必要条件故选:A.2、B【解析】设等比数列的公比为q,根据等比数列的通项公式,列出方程组,即可求得,进而可求得答案.【详解】设等比数列公比为q,则,解得,所以.故选:B3、D【解析】根据抛物线的焦点坐标为可知,抛物线即的焦点坐标为,故选D.考点:抛物线的标准方程及其几何性质.4、B【解析】构造函数,根据题意,求得其单调性,利用函数单调性解不等式即可.【详解】构造函数,则,故在上单调递减;又,故可得,则,即,解得,故不等式解集为.故选:B.【点睛】本题考察利用导数研究函数单调性,以及利用函数单调性求解不等式,解决本题的关键是根据题意构造函数,属中档题.5、D【解析】分析出为等腰直角三角形,可得出原点到直线的距离,利用点到直线的距离公式可得出关于的等式,由此可解得的值.【详解】圆的圆心为原点,由于且,所以,为等腰直角三角形,且圆心到直线的距离为,由点到直线的距离公式可得,解得.故选:D.【点睛】关键点点睛:本题考查利用圆周角求参数,解题的关键在于求出弦心距,再利用点到直线的距离公式列方程求解参数.6、B【解析】根据与的关系求出通项,然后可知答案.【详解】当时,,当时,,综上,的通项公式为,数列为等差数列同理,由等比数列定义可判断数列不是等比数列.故选:B7、D【解析】由抛物线准线与圆相切,结合抛物线方程,令求切线方程且抛物线准线方程为,即可求参数p.【详解】圆的标准方程为:,故当时,有或,所以或,得或6故选:D8、B【解析】由直线的平行关系可得,解之可得【详解】解:直线与直线平行,,解得故选:9、D【解析】根据对立事件的定义选择【详解】对立事件是指事件A和事件B必有一件发生,连续抛掷一枚均匀硬币3次,“至少2次出现正面”即有2次或3次出现正面,对立事件为“有2次或3次出现反面”故选:D10、C【解析】根据圆的方程得出两圆的圆心和半径,再得出圆心距离与两圆的半径的关系,可得选项.【详解】圆的圆心为,半径,的圆心为,半径,则,所以两圆的位置是关系是相交,故选:C.【点睛】本题考查两圆的位置关系,关键在于运用判定两圆的位置关系一般利用几何法.即比较圆心之间的距离与半径之和、之差的大小关系,属于基础题.11、D【解析】根据题意,结合,,利用不等式的性质可判断,从而判断,再利用不等式性质得出正确答案.【详解】,,,又,,两边同乘以负数,可知故选:D12、D【解析】根据特称命题否定的方法求解,改变量词,否定结论.【详解】由题意可知命题“存在,使得”的否定为“对任意,”.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、①.②.【解析】设等差数列公差为d,根据等差数列的性质即可求通项公式;,采用裂项相消的方法求.【详解】设等差数列公差为d,,,;∵,∴.故答案为:;.14、【解析】当时,利用及求得函数的解析式.【详解】当时,,由于函数是奇函数,故.【点睛】本小题主要考查已知函数的奇偶性以及轴一侧的解析式,求另一侧的解析式,属于基础题.15、【解析】根据中位数、平均数的定义,结合茎叶图进行计算求解即可.【详解】根据茎叶图可知:甲组名学生在一次英语听力测试中的成绩分别;乙组名学生在一次英语听力测试中的成绩分别,因为甲组数据的中位数为,所以有,又因为乙组数据的平均数为,所以有,所以,故答案为:16、【解析】先利用勾股定理得出满足条件的长度,再结合几何概型的概率公式得出答案.【详解】设,当时,,;当时,,所以当到的距离都大于时,的最大边是AB,所以的最大边是AB的概率为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析,定值为-1.【解析】(1)根据给定条件探求出,再利用椭圆定义即可得轨迹C的方程.(2)由给定条件可得直线的斜率k存在且不为0,写出直线的方程,再联立轨迹C的方程,借助韦达定理计算作答.【小问1详解】圆:的圆心,半径为8,因A是圆上一动点,线段的垂直平分线交半径于P点,则,于是得,因此,P点的轨迹C是以,为左右焦点,长轴长2a=8的椭圆,短半轴长b有,所以P点的轨迹C的方程是.【小问2详解】因直线过点且与曲线C:相交于M,N两点,则直线的斜率存在且不为0,又不经过点,即直线的斜率不等于-1,设直线的斜率为k,且,直线的方程为:,即,由消去y并整理得:,,即,则有且,设,则,直线MQ的斜率,直线NQ的斜率,,所以直线MQ的斜率与直线NQ的斜率之和为定值.18、(1);(2)最大值为.【解析】(1)由抛物线焦点与准线的距离即可得解;(2)设,由平面向量的知识可得,进而可得,再由斜率公式及基本不等式即可得解.【详解】(1)抛物线的焦点,准线方程为,由题意,该抛物线焦点到准线的距离为,所以该抛物线的方程为;(2)[方法一]:轨迹方程+基本不等式法设,则,所以,由在抛物线上可得,即,所以直线的斜率,当时,;当时,,当时,因为,此时,当且仅当,即时,等号成立;当时,;综上,直线斜率的最大值为.[方法二]:【最优解】轨迹方程+数形结合法同方法一得到点Q的轨迹方程为设直线的方程为,则当直线与抛物线相切时,其斜率k取到最值.联立得,其判别式,解得,所以直线斜率的最大值为[方法三]:轨迹方程+换元求最值法同方法一得点Q的轨迹方程为设直线的斜率为k,则令,则的对称轴为,所以.故直线斜率的最大值为[方法四]参数+基本不等式法由题可设因,所以于是,所以则直线的斜率为当且仅当,即,时等号成立,所以直线斜率的最大值为【整体点评】方法一根据向量关系,利用代点法求得Q的轨迹方程,得到直线OQ的斜率关于的表达式,然后利用分类讨论,结合基本不等式求得最大值;方法二同方法一得到点Q的轨迹方程,然后利用数形结合法,利用判别式求得直线OQ的斜率的最大值,为最优解;方法三同方法一求得Q的轨迹方程,得到直线的斜率k的平方关于的表达式,利用换元方法转化为二次函数求得最大值,进而得到直线斜率的最大值;方法四利用参数法,由题可设,求得x,y关于的参数表达式,得到直线的斜率关于的表达式,结合使用基本不等式,求得直线斜率的最大值.19、(1)(2)证明见解析【解析】(1)根据,利用椭圆的定义求解;(2)(解法1)设,得到,的方程,与椭圆方程联立,求得M,N的坐标,写出直线的方程求解;(解法2)上同解法1,由对称性分析知动直线MN所过定点一定在x轴上,设所求定点为,由C,D,T三点共线,然后由求解;(解法3)设,由,,设:,:,其中,与椭圆方程联立,整理得,由F,M,N三点的横坐标为该方程的三个根,得到:求解.【小问1详解】解:由题知,则,由椭圆的定义知动点P的轨迹为以A,B为焦点,6为长轴长的椭圆,所以轨迹的方程为【小问2详解】(解法1)易知E,F为椭圆的长轴两端点,不妨设,,设,则,,于是:,:,联立得,解得或,易得,同理当,即时,:;当时,有,于是:,即综上直线MN过定点(解法2)上同解法1,得,,由对称性分析知动直线MN所过定点一定在x轴上,设所求定点为,由C,D,T三点共线,得,即,于是,整理得,由t的任意性知,即,所以直线MN过定点(解法3)设,则,,当时,直线MN即为x轴;当时,因为,所以,则,设:,:,其中,联立,得,整理得,易知F,M,N三点的横坐标为该方程的三个根,所以:,由及的任意性,知直线MN过定点20、(1);(2)是定值,.【解析】(1)根据给定条件结合抛物线定义直接求解作答.(2)联立直线与抛物线方程,借助韦达定理、斜率坐标公式计算作答.【小问1详解】过点P作直线的垂线,垂足为点N,依题意,,则动点P的轨迹是以为焦点,直线为准线的抛物线,所以曲线W的方程是.【小问2详解】设,,由消去x并整理得:,则,,因,,则,,因此,所以.【点睛】方法点睛:求定值问题常见的方法:(1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值21、(1)(2)【解析】(1)由向量的坐标先求出,,,由向量的夹角公式可得答案.(2)由题意可得,从而求出参数的值【小问1详解】由题,,,故,,,所以故与夹角余弦值为.【小问2详解】由与的互相垂直知,,,即22、(Ⅰ)证明见解析;(Ⅱ).【解析】(Ⅰ)证明出四边形为平行四边形,可得出,然后利用线面平行的判定定理可证得结论;也可利用空间向量计算证明;(Ⅱ)可以将平面扩展,将线面角转化,利用几何方法作出线面角,然后计算;也可以建立空间直角坐标系,利用空间向量计算求解.【详解】(Ⅰ)[方法一]:几何法如下图所示:在正方体中,且,且,且,所以,四边形为平行四边形,则,平面,平面,平面;[方法二]:空间向量坐标法以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,设正方体的棱长为,则、、、,,,设平面的法向量为,由,得,令,则,,则.又∵向量,,又平面,平面;(Ⅱ)[方法一]:几何法延长到,使得,连接,交于,又∵,∴四边形为平行四边形,∴,又∵,∴,所以平面即平面,连接,作,垂足为,连接,∵平面,平面,∴,又∵,∴直线平面,又∵直线平面,∴平面平面,∴在平面中的射影在直线上,∴直线为直线在平面中的射影,∠为直线与平面所成的角,根据直线直线,可知∠为直线与平面所成的角.设正方体的棱长为2,则,,∴,∴,∴,即直线与平面所成角的正弦值为.[方法二]:向量法接续(I)的向量方法,求得平面平面的法向量,又∵,∴,∴直线与平面所成角的正弦值为.[方法三]:几何法+体积法如图,设的中点为F,延长,易证三线交于一点P因为,所以直线与平面所成的角,即直线与平面所成的角设正方体的棱长为2,在中,易得,可得由,得,整理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 掌声 微课教育课件
- 七下历史 教育课件
- 2024版长期房屋租赁合同(商业用途)2篇
- 2024年度礼品定制生产及供应合同2篇
- 供应链金融合作协议范本
- 买房押金合同协议书范本
- 2024年度二人合伙经营咖啡厅合同2篇
- 2024年度版权质押合同:某音乐公司与某金融机构关于音乐版权质押融资
- 咏柳 音乐课件
- 2024年度知识产权许可合同许可范围和许可条件具体规定
- 2024年湖北襄阳四中五中自主招生英语试卷真题(含答案详解)
- DB34T-老旧电梯更新、改造、重大修理工作导则
- 施工现场临时用电安全监理检查表
- 不符合慢病证办理告知书
- GB/T 44230-2024政务信息系统基本要求
- 《数字媒体技术导论》全套教学课件
- 海南乐东黎族自治县事业单位定向公开招聘驻县部队随军家属工作人员5人(第1号)(高频重点复习提升训练)共500题附带答案详解
- GB/T 44257.1-2024电动土方机械用动力电池第1部分:安全要求
- 广东省深圳市宝安区2023-2024学年七年级下学期期末数学试题(无答案)
- 浙教版劳动九年级项目四任务二《统筹规划与工作分配》教案
- 国家开放大学专科《法理学》(第三版教材)形成性考核试题及答案
评论
0/150
提交评论