版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第2页,共4页2025届浙江省宁波市外国语学校数学九上开学经典试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)平面直角坐标系中,四边形ABCD的顶点坐标分别是A(-3,0),B(0,2),C(3,0),D(0,-2),则四边形ABCD是()A.矩形 B.菱形 C.正方形 D.平行四边形2、(4分)如图,已知反比例函数和一次函数的图象相交于点、两点,则不等式的解集为()A.或 B.C. D.或3、(4分)用尺现作图的方法在一个平行四边形内作菱形,下列作法错误的是()A. B. C. D.4、(4分)关于的方程有实数根,则满足()A. B.且 C.且 D.5、(4分)如图,已知点是线段的黄金分割点,且.若表示以为边的正方形面积,表示长为、宽为的矩形面积,则与的大小关系为()A. B. C. D.不能确定6、(4分)一个多边形的内角和是其外角和的3倍,则这个多边形的边数是()A.7 B.8 C.6 D.57、(4分)点P(2,-3)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限8、(4分)用配方法解一元二次方程时,此方程可变形为()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)若一次函数y=(2m﹣1)x+3﹣2m的图象经过一、二、四象限,则m的取值范围是__________10、(4分)已知,点P在轴上,则当轴平分时,点P的坐标为______.11、(4分)若一组数据1,3,5,,的众数是3,则这组数据的方差为______.12、(4分)一次函数y=2x-1的图象在轴上的截距为______13、(4分)如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若OF的长为,则△CEF的周长为______.三、解答题(本大题共5个小题,共48分)14、(12分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.15、(8分)(1)已知,求的值;(2)解方程:.16、(8分)如图平行四边形ABCD中,对角线AC与BD相交于O,E.F是AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形17、(10分)作图:如图,平面内有A,B,C,D四点按下列语句画图:(1)画射线AB,直线BC,线段AC(2)连接AD与BC相交于点E.18、(10分)如图,一次函数的图象与反比例函数的图象交于点和点.(1)求一次函数和反比例函数的解析式;(2)直接写出不等式的解集.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在▱ABCD中(AD>AB),用尺规作图作射线BP交AD于点E,若∠D=50°,则∠AEB=___度.20、(4分)已知整数x、y满足+3=,则的值是______.21、(4分)二次函数的函数值自变量之间的部分对应值如下表:…014……4…此函数图象的对称轴为_____22、(4分)若五个整数由小到大排列后,中位数为4,唯一的众数为2,则这组数据之和的最小值是_____.23、(4分)计算:3-2=;二、解答题(本大题共3个小题,共30分)24、(8分)小红同学经常要测量学校旗杆的高度,她发现旗杆的绳子刚好垂到地面上,当她把绳子下端拉开5m后,发现这时绳子的下端正好距地面1m,学校旗杆的高度是()A.21m B.13m C.10m D.8m25、(10分)如图,在△ABC中,∠ACB=90°,AC=8,BC=1.CD⊥AB于点D.点P从点A出发,以每秒1个单位长度的速度沿线段AB向终点B运动.在运动过程中,以点P为顶点作长为2,宽为1的矩形PQMN,其中PQ=2,PN=1,点Q在点P的左侧,MN在PQ的下分,且PQ总保持与AC垂直.设P的运动时间为t(秒)(t>0),矩形PQMN与△ACD的重叠部分图形面积为S(平方单位).(1)求线段CD的长;(2)当矩形PQMN与线段CD有公共点时,求t的取值范围;(3)当点P在线段AD上运动时,求S与t的函数关系式.26、(12分)为了解某校九年级男生在体能测试的引体向上项目的情况,随机抽取了部分男生引体向上项目的测试成绩,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的男生人数为,图①中m的值为;(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;(Ⅲ)若规定引体向上6次及以上(含6次)为该项目良好,根据样本数据,估计该校320名九年级男生中该项目良好的人数.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】
在平面直角坐标系中,根据点的坐标画出四边形ABCD,再根据对角线互相垂直的平行四边形是菱形得出四边形ABCD是菱形.【详解】解:如图所示:∵A(-3,0)、B(0,2)、C(3,0)、D(0,-2),∴OA=OC,OB=OD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形ABCD为菱形,故选B.本题考查了菱形的判定,坐标与图形性质,掌握菱形的判定方法利用数形结合是解题的关键.2、D【解析】
分析两个函数以交点为界,观察交点每一侧的图像可以得到结论.【详解】解:观察图像得:的解集是:或.故选D.本题考查的是利用图像直接写不等式的解集问题,理解图像反映出来的函数值的变化对应的自变量的变化是解题关键.3、A【解析】
根据菱形的判定方法一一判定即可【详解】作的是角平分线,只能说明四边形ABCD是平行四边形,故A符合题意B、作的是连接AC,分别做两个角与已知角∠CAD、∠ACB相等的角,即∠BAC=∠DAC,∠ACB=∠ACD,能得到AB=BC,AD=CD,又AB∥CD,所以四边形ABCD为菱形,B不符合题意C、由辅助线可知AD=AB=BC,又AD∥BC,所以四边形ABCD为菱形,C不符合题意D、作的是BD垂直平分线,由平行四边形中心对称性质可知AC与BD互相平分且垂直,得到四边形ABCD是菱形,D不符合题意故选A本题考查平行四边形的判定,能理解每个图的作法是本题解题关键4、A【解析】
分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a的范围.【详解】当a=5时,原方程变形为-4x-1=0,解得x=-;当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根,所以a的取值范围为a≥1.故选A.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.5、B【解析】
根据黄金分割的概念和正方形的性质知:BC2=AB•AC,变形后求解即可.【详解】∵C是线段AB的黄金分割点,且BC>AC,∴BC2=AB•AC,∴S1=BC2=AB•AC=S2,故选B.此题主要是考查了线段的黄金分割点的概念,根据概念表示出三条线段的关系,再结合正方形的面积进行分析计算是解题关键.6、B【解析】
根据多边形的内角和公式及外角的特征计算.【详解】解:多边形的外角和是360°,根据题意得:110°•(n-2)=3×360°解得n=1.故选:B.本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.7、D【解析】
根据各象限内点的坐标特征解答.【详解】解:点P(2,-3)在第四象限.故选:D.本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8、D【解析】试题解析:故选D.二、填空题(本大题共5个小题,每小题4分,共20分)9、m<【解析】
∵y=(2m﹣1)x+3﹣2m的图象经过一、二、四象限,∴(2m﹣1)<0,3﹣2m>0∴解不等式得:m<,m<,∴m的取值范围是m<.故答案为m<.10、【解析】
作点A关于y轴对称的对称点,求出点的坐标,再求出直线的解析式,将代入直线解析式中,即可求出点P的坐标.【详解】如图,作点A关于y轴对称的对称点∵,点A关于y轴对称的对称点∴设直线的解析式为将点和点代入直线解析式中解得∴直线的解析式为将代入中解得∴故答案为:.本题考查了坐标点的问题,掌握角平分线的性质、轴对称的性质、一次函数的性质是解题的关键.11、2【解析】
先根据众数的概念得出x=3,再依据方差的定义计算可得.【详解】解:∵数据1,3,5,x的众数是3,∴x=3,则数据为1、3、3、5,∴这组数据的平均数为:,∴这组数据的方差为:;故答案为:2.本题主要考查众数和方差,解题的关键是根据众数的概念求出x的值,并熟练掌握方差的定义和计算公式.12、-1【解析】
根据截距的定义:一次函数y=kx+b中,b就是截距,解答即可.【详解】解:∵一次函数y=2x-1中b=-1,∴图象在轴上的截距为-1.故答案为:-1.本题考查了一次函数图象上点的坐标特征.13、18【解析】是的中位线,.,.由勾股定理得.是的中线,.∴△CEF的周长为6.5+6.5+5=18三、解答题(本大题共5个小题,共48分)14、(1)见解析;(2)当点O在边AC上运动到AC中点时,四边形AECF是矩形.见解析;(3)△ABC是直角三角形,理由见解析.【解析】
(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案;(2)根据AO=CO,EO=FO可得四边形AECF平行四边形,再证明∠ECF=90°利用矩形的判定得出即可(3)利用正方形的性质得出AC⊥EN,再利用平行线的性质得出∠BCA=90°,即可得出答案【详解】证明:(1)∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,∠4=∠6,∵MN∥BC,∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO=CO,FO=CO,∴OE=OF;(2)当点O在边AC上运动到AC中点时,四边形AECF是矩形.证明:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵CE是∠ACB
的平分线,CF是∠ACD的平分线,∴∠ECF=(∠ACB
+∠ACD)=90°,∴平行四边形AECF是矩形.(3)△ABC是直角三角形,理由:∵四边形AECF是正方形,∴AC⊥EN,故∠AOM=90°,∵MN∥BC,∴∠BCA=∠AOM,∴∠BCA=90°,∴△ABC是直角三角形.此题考查了正方形的判断和矩形的判定,需要知道排放新的象征和角平分线的性质才能解答此题15、(1);(2),.【解析】
(1)代入即可进行求解;(2)根据因式分解法即可求解一元二次方程.【详解】(1)代入得:;(2)解:,,,.此题主要考查代数式求值与解一元二次方程,解题的关键是熟知整式的运算及方程的解法.16、见解析【解析】
要证明四边形BFDE是平行四边形,可以证四边形BFDE有两组对边分别相等,即证明BF=DE,EB=DF即可得到.【详解】证明:∵ABCD是平行四边形,∴AB=DC,AB∥DC,∴∠BAF=∠DCE,又∵对角线AC与BD相交于O,E.F是AC上的两点,并且AE=CF,所以在△ABF和△DCE中,,∴△ABF≌△CDE(SAS),∴BF=DE,同理可证:△ADF≌△CBE(SAS),∴DF=BE,∴四边形BFDE是平行四边形.本题主要考查平行四边形的判定(两组对边分别平行,两组对边分别相等,有一组对边平行且相等),掌握判定的方法是解题的关键,在解题过程中,需要灵活运用所学知识,掌握三角形全等的判定或者两直线平行的判定对证明这道题目有着至关重要的作用.17、答案见解析【解析】
利用作射线,直线和线段的方法作图.【详解】如图:本题考查了作图﹣复杂作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图.18、(1),;(2)或.【解析】
(1)将点A的坐标代入反比例函数的解析式可求得m的值,从而得到反比例函数的解析式,然后将点B的坐标代入可求得n的值,接下来,利用待定系数法求得直线AB的解析式即可;
(2)不等式的解集为直线y=kx+b位于反比例函数上方部分时,自变量x的取值范围;【详解】解:(1)∵点在反比例函数上,∴,∴反比例函数解析式为:.∵点在上,∴.∴.将点,代入,得.解得.直线的解析式为:.(2)直线y=kx+b位于反比例函数上方部分时,x的取值范围是或.∴不等式的解集为或.本题主要考查的是反比例函数的综合应用,数形结合是解答问题(2)的关键一、填空题(本大题共5个小题,每小题4分,共20分)19、1.【解析】
由平行四边形的性质可知:AD∥BC,推出∠AEB=∠EBC,求出∠EBC即可;【详解】∵四边形ABCD是平行四边形,∴∠ABC=∠D=50°,AD∥BC,由作图可知,BE平分∠ABC,∴∠EBC=∠ABC=1°,∴∠AEB=∠EBC=1°,故答案为1.本题考查平行四边形的性质、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20、6或2或2【解析】
由+3==6,且x、y均为整数,可得=,3=0或=3,3=3或=0,3=,分别求出x、y的值,进而求出.【详解】∵+3==6,又x、y均为整数,∴=,3=0或=3,3=3或=0,3=,∴x=72,y=0或x=18,y=2或x=0,y=8,∴=6或2或2.故答案为:6或2或2.本题考查了算术平方根,二次根式的化简与性质,进行分类讨论是解题的关键.21、x=2.【解析】
根据抛物线的对称性,x=0、x=4时的函数值相等,然后列式计算即可得解.【详解】∵x=0、x=4时的函数值都是−1,∴此函数图象的对称轴为直线x==2,即直线x=2.故答案为:直线x=2.此题考查二次函数的性质,解题关键在于利用其对称性求解.22、19【解析】
根据“五个整数由小到大排列后,中位数为4,唯一的众数为2”,可知此组数据的第三个数是4,第一个和第二个数是2,据此可知当第四个数是5,第五个数是6时和最小.【详解】∵中位数为4∴中间的数为4,又∵众数是2∴前两个数是2,∵众数2是唯一的,∴第四个和第五个数不能相同,为5和6,∴当这5个整数分别是2,2,4,5,6时,和最小,最小是2+2+4+5+6=19,故答案为19.本题考查中位数和众数,能根据中位数和众数的意义进行逆向推理是解决本题的关键.在读题时需注意“唯一”的众数为2,所以除了两个2之外其它的数只能为1个.23、【解析】根据负整数指数为正整数指数的倒数计算.解:3-2=.故答案为.二、解答题(本大题共3个小题,共30分)24、B【解析】
根据题意设旗杆的高AB为x米,则绳子AC的长为x米,在Rt△ACH利用勾股定理构建方程即可解决问题.【详解】如图,已知AB=AC,CD⊥BD,CH⊥AB,CD=BH=1米,CH=5米,设AB=AC=x米.在Rt△ACH中,∵AC2=AH2+CH2,∴x2=52+(x-1)2,∴x=13,∴AB=13(米),故选B.此题考查了勾股定理在实际问题中的应用,能够正确理解题意继而构造直角三角形是解决本题的关键,难度一般.25、(1)CD=;(2)≤t≤;(3)当0<t<时,S=;当≤t≤时,S=2;当<t≤时,S=.【解析】
(1)由勾股定理得出AB=10,由△ABC的面积得出AC•BC=AB•CD,即可得出CD的长;(2)分两种情形:①当点N在线段CD上时,如图1所示,利用相似三角形的性质求解即可.②当点Q在线段CD上时,如图2所示,利用相似三角形的性质求解即可;(3)首先求出点Q落在AC上的运动时间t,再分三种情形:①当0<t<时,重叠部分是矩形PNYH,如图4所示,②当≤t≤时,重合部分是矩形PNMQ,S=PQ•PN=2,③当<t≤时,如图5中重叠部分是五边形PQMJI,分别求解即可.【详解】解:(1)∵∠ACB=90°,AC=8,BC=1,∴AB==10,∵S△ABC=AC•BC=AB•CD,∴AC•BC=AB•CD,即:8×1=10×CD,∴CD=;(2)在Rt△ADC中,AD=,BD=AB−AD=,当点N在线段CD上时,如图1所示:∵矩形PQMN,PQ总保持与AC垂直,∴PN∥AC,∴∠NPD=∠CAD,∵∠PDN=∠ADC,∴△PDN∽△ADC,∴,即:,解得:PD=,∴t=AD−PD=;当点Q在线段CD上时,如图2所示:∵PQ总保持与AC垂直,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度环保节能型车辆采购与租赁合同
- 2024年度初创企业股权结构调整及合伙人退出合同
- 2024年度亚洲至南美时尚产品授权合同
- 2024年度水库渔业技术研发合同
- 04年房地产开发项目承包合同
- 2024年度物流服务合同(国际运输)
- 04年仓储物流合作框架合同
- 2024年度新能源技术研发与合作协议
- 2024年度收藏品买卖合同
- 2024年度店铺合同纠纷解决与法律咨询合同
- 2024年烈士陵园、纪念馆服务项目资金需求报告代可行性研究报告
- 先唐歌与诗智慧树知到期末考试答案章节答案2024年长江师范学院
- 业主授权租户安装充电桩委托书
- 2024化粪池清理协议书
- 北师大版三年级数学上册《蚂蚁做操》
- 桥式起重机定期检查记录表
- 2024年互联网营销师(中级)理论考试题库(附答案)
- 冶金工程职业生涯规划
- MOOC 光学发展与人类文明-华南师范大学 中国大学慕课答案
- 医疗卫生机构反恐
- 2024年广东普通专升本《公共英语》完整版真题
评论
0/150
提交评论