2025届江苏省邗江实验学校数学九上开学监测试题【含答案】_第1页
2025届江苏省邗江实验学校数学九上开学监测试题【含答案】_第2页
2025届江苏省邗江实验学校数学九上开学监测试题【含答案】_第3页
2025届江苏省邗江实验学校数学九上开学监测试题【含答案】_第4页
2025届江苏省邗江实验学校数学九上开学监测试题【含答案】_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页2025届江苏省邗江实验学校数学九上开学监测试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)某校男子足球队年龄分布条形图如图所示,该球队年龄的众数和中位数分别是A. B.C. D.2、(4分)一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x<0 B.x>0 C.x<2 D.x>23、(4分)坐标平面上,有一线性函数过(-3,4)和(-7,4)两点,则此函数的图象会过()A.第一、二象限 B.第一、四象限C.第二、三象限 D.第二、四象限4、(4分)如果一次函数y=kx+b(k、b是常数)的图象不经过第二象限,那么k、b应满足的条件是()A.k>0,且b≤0 B.k<0,且b>0 C.k>0,且b≥0 D.k<0,且b<05、(4分)已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是()A.a>b B.a=b C.a<b D.以上都不对6、(4分)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.1.其中说法正确的是()A.①②③ B.①②④ C.①③④ D.①②③④7、(4分)下列各组数中,属于勾股数的是()A.1,,2 B.1.5,2,2.5 C.6,8,10 D.5,6,78、(4分)下列方程中是一元二次方程的是()A.2x+1=0 B.x2+y=1 C.x2+2=0 D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知一次函数的图象经过点,则不等式的解是__________.10、(4分)▱ABCD中,∠A=50°,则∠D=_____.11、(4分)在△ABC中,∠C=90∘,AC=3,BC=4,点D,E,F分别是边AB,AC,BC的中点,则△DEF的周长是12、(4分)若分式方程无解,则__________.13、(4分)某跳远队甲、乙两名运动员最近10次跳远成绩的平均数为602cm,若甲跳远成绩的方差为=65.84,乙跳远成绩的方差为=285.21,则成绩比较稳定的是_____.(填“甲”或“乙”)三、解答题(本大题共5个小题,共48分)14、(12分)甲乙两人参加某项体育训练,近期五次测试成绩得分情况如图所示:(1)分别求出两人得分的平均数;(2)谁的方差较大?(3)根据图表和(1)的计算,请你对甲、乙两人的训练成绩作出评价.15、(8分)求证:两组对边分别相等的四边形是平行四边形.(要求:画出图形,写出已知,求证和证明过程)16、(8分)如图,已知在四边形ABCD中,AE⊥BD于E,CF⊥BD于F,AE=CF,BF=DE,求证:四边形ABCD是平行四边形.17、(10分)如图(1),折叠平行四边形,使得分别落在边上的点,为折痕(1)若,证明:平行四边形是菱形;(2)若,求的大小;(3)如图(2),以为邻边作平行四边形,若,求的大小18、(10分)如图,平面直角坐标系中,反比例函数y1=的图象与函数y2=mx图象交于点A,过点A作AB⊥x轴于点B,已知点A坐标(2,1).(1)求反比例函数解析式;(2)当y2>y1时,求x的取值范围.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)若二次根式在实数范围内有意义,则x的取值范围是_____.20、(4分)已知直线y=kx过点(1,3),则k的值为____.21、(4分)铁路部门规定旅客免费携行李箱的长宽高之和不超过,某厂家生产符合该规定的行李箱,已知行李箱的高为,长与宽之比为,则该行李箱宽度的最大值是_______.22、(4分)已知一个钝角的度数为,则x的取值范围是______23、(4分)如图,在Rt△ABC中,BD平分∠ABC交AC于点D,过D作DE∥BC交AB于点E,若DE刚好平分∠ADB,且AE=a,则BC=_____.二、解答题(本大题共3个小题,共30分)24、(8分)如下4个图中,不同的矩形ABCD,若把D点沿AE对折,使D点与BC上的F点重合;(1)图①中,若DE︰EC=2︰1,求证:△ABF∽△AFE∽△FCE;并计算BF︰FC;(2)图②中若DE︰EC=3︰1,计算BF︰FC=;图③中若DE︰EC=4︰1,计算BF︰FC=;(3)图④中若DE︰EC=︰1,猜想BF︰FC=;并证明你的结论25、(10分)如图,平面直角坐标系中,直线AB:交y轴于点,交x轴于点B.

(1)求直线AB的表达式和点B的坐标;

(2)直线l垂直平分OB交AB于点D,交x轴于点E,点P是直线l上一动点,且在点D的上方,设点P的纵坐标为n.①当

时,求点P的坐标;②在①的条件下,以PB为斜边在第一象限作等腰直角,求点C的坐标.26、(12分)如图,在平行四边形ABCD中,DE,BF分别是∠ADC,∠ABC的角平分线.求证:四边形DEBF是平行四边形.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】

根据条形图,观察可得15岁的人数最多,因此可得众数是15,将岁数从大到小排列,根据最中间的那个数就是中位数.【详解】首先根据条形图可得15岁的人数最多,因此可得众数是15;将岁数从大到小排列,根据条形图可知有人数:,因此可得最中间的11和12个的平均值是中位数,11和12个人都是15岁,故可得中位数是15.本题主要考查众数和中位数的计算,是数据统计的基本知识,应当熟练掌握.2、C【解析】

由图象可知,直线与x轴相交于(1,0),当y>0时,x<1.故答案为x<1.3、A【解析】

根据该线性函数过点(-3,4)和(-7,4)知,该直线是y=4,据此可以判定该函数所经过的象限.【详解】∵坐标平面上有一次函数过(-3,4)和(-7,4)两点,∴该函数图象是直线y=4,∴该函数图象经过第一、二象限.故选:A.本题考查了一次函数的性质.解题时需要了解线性函数的定义:在某一个变化过程中,设有两个变量x和y,如果可以写成y=kx+b(k为一次项系数,b为常数),那么我们就说y是x的一次函数,其中x是自变量,y是因变量.一次函数在平面直角坐标系上的图象为一条直线.4、A【解析】分析:由一次函数图象不经过第二象限可得出该函数图象经过第一、三象限或第一、三、四象限,再利用一次函数图象与系数的关系,即可找出结论.详解:∵一次函数y=kx+b(k、b是常数)的图象不经过第二象限,∴一次函数y=kx+b(k、b是常数)的图象经过第一、三象限或第一、三、四象限,当一次函数y=kx+b(k、b是常数)的图象经过第一、三象限时,k>0,b=0;当一次函数y=kx+b(k、b是常数)的图象经过第一、三、四象限时,k>0,b<0.综上所述:k>0,b⩽0.故选A.点睛:本题考查了一次函数图象与系数的关系,分一次函数图象过一、三象限和一、三、四象限两种情况进行分析.5、A【解析】

∵k=﹣2<0,∴y随x的增大而减小,∵1<2,∴a>b.故选A.6、A【解析】

根据乙追上甲的时间求出乙的速度可判断①,根据乙由相遇点到达B点所用时间可确定m的值,即可判断②,根据乙休息1h甲所行驶的路程可判断③,由乙返回时,甲乙相距80km,可求出两车相遇的时间即可判断④.【详解】由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.所以正确的有①②③,故选A.本题考查通过分段函数图像解决问题,根据题意明确图像中的信息是解题关键.7、C【解析】

根据勾股数的定义:满足a2+b2=c2的三个正整数,称为勾股数,据此判断即可.【详解】A.1,,2,因为不是正整数,故一定不是勾股数,故此选项错误;B.1.5,2,2.5,因为不是正整数,故一定不是勾股数,故此选项错误;C.因为62+82=102,故是勾股数.故此选项正确;D.因为52+62≠72,故不是勾股数,故此选项错误.故选C.本题考查了勾股数的判定方法,比较简单,首先看各组数据是否都是正整数,再检验是否符合较小两边的平方和=最大边的平方.8、C【解析】

本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为1.由这两个条件得到相应的关系式,再求解即可.【详解】A、该方程是一元一次方程,故本选项错误.B、该方程是二元二次方程,故本选项错误.C、该方程是一元二次方程,故本选项正确.D、该方程分式方程,故本选项错误.故选C.本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=1(且a≠1).二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】

将点P坐标代入一次函数解析式得出,如何代入不等式计算即可.【详解】∵一次函数的图象经过点,∴,即:,∴可化为:,即:,∴.故答案为:.本题主要考查了一次函数与不等式的综合运用,熟练掌握相关概念是解题关键.10、130°【解析】根据平行四边形的邻角互补,则∠D=11、6【解析】

首先利用勾股定理求得斜边长,然后利用三角形中位线定理求得答案即可.【详解】解:∵Rt△ABC中,∠C=90°,AC=3,BC=4,∴AB=AC2+BC∵点D、E、F分别是边AB、AC、BC的中点,∴DE=12BC,DF=12AC,EF=1∴C△DEF=DE+DF+EF=12BC+12AC+12AB=1故答案为:6.本题考查了勾股定理和三角形中位线定理.12、1【解析】

先把m看作已知,解分式方程得出x与m的关系,再根据分式方程无解可确定方程的增根,进一步即可求出m的值.【详解】解:在方程的两边同时乘以x-1,得,解得.因为原方程无解,所以原分式方程有增根x=1,即,解得m=1.故答案为1.本题考查了分式方程的解法和分式方程的增根,正确理解分式方程无解与其增根的关系是解题的关键.13、甲.【解析】试题分析:∵=65.84,=285.21,∴<,∴甲的成绩比乙稳定.故答案为甲.考点:方差.三、解答题(本大题共5个小题,共48分)14、(1)13,13;(2)4,0.8;甲的方差大;(3)从平均数来看甲乙训练成绩一样,从图中可以看中,乙比较稳定,甲波动大.【解析】

(1)根据图形,分别写出甲、乙两个人这五次的成绩,甲:10,13,12,14,16;乙:13,14,12,12,14;再根据平均数进行计算即可;(2)由(1)利用和方差的公式进行计算即可(3)根据方差和平均数的结果进行分析即可.【详解】(1)两人得分的平均数:甲=(10+13+12+14+16)=13,乙=(13+14+12+12+14)=13,(2)方差:甲=(9+0+1+1+9)=4,乙=(0+1+1+1+1)=0.8,甲的方差大。(3)从平均数来看甲乙训练成绩一样,从图中可以看中,乙比较稳定,甲波动大。此题考查折线统计图,算术平均数,方差,解题关键在于掌握运算法则15、见解析【解析】分析:题设作为已知条件,结论作为求证,画出图形,写出已知,求证,然后证明即可.详解:已知:如图,在四边形ABCD中,AB=CD,AD=BC.求证:四边形ABCD是平行四边形.证明:连结AC在ΔABC和ΔCDA中.∵AB=CD,BC=DA,AC=CA,∴ΔABC≌ΔCDA,∴∠BAC=∠DCA,∠ACB=∠CAD,∴AB//CD,AD//BC,∴四边形ABCD是平行四边形.点睛:本题考查了平行四边形的判定、全等三角形的判定和性质等知识,解题的关键是熟练掌握命题的证明方法,学会写已知求证,属于中考常考题型.16、见解析【解析】

由SAS证得△ADE≌△CBF,得出AD=BC,∠ADE=∠CBF,证得AD∥BC,利用一组对边平行且相等的四边形是平行四边形判定四边形ABCD是平行四边形.【详解】证明:∵AE⊥BD于E,CF⊥BD于F,∴∠AED=∠CFB=90°,在△ADE和△CBF中,DE=BF∴△ADE≌△CBF(SAS),∴AD=BC,∠ADE=∠CBF,∴AD∥BC,∴四边形ABCD是平行四边形.17、(1)详见解析;(2)30°;(3)45°.【解析】

(1)利用面积法解决问题即可.(2)分别求出∠BAD,∠BAB′,∠DAD′即可解决问题.(3)如图2中,延长AE到H,使得EH=EA,连接CH,HG,EF,AC.想办法证明E,H,G,C四点共圆,可得∠EGC=∠EHC=45°.【详解】(1)证明:如图1中,∵四边形ABCD是平行四边形,AE⊥BC,AF⊥CD,∴S平行四边形ABCD=BC•AE=CD•AF,∵AE=AF,∴BC=CD,∴平行四边形是菱形;(2)解:如图1中,∵四边形ABCD是平行四边形,∴∠C=∠BAD=110°,∵AB∥CD,∴∠C+∠B=180°,∴∠B=∠D=70°,∵AE⊥BC,AF⊥CD.∴∠AEB=∠AFD=90°,∴∠BAE=∠DAF=20°,由翻折变换的性质可知:∠BAB′=2∠BAE=40°,∠DAD′=2∠DAF=40°,∴∠B′AD′=110°﹣80°=30°.(3)解:如图2中,延长AE到H,使得EH=EA,连接CH,HG,EF,AC.∵EA=EC,∠AEC=90°,∴∠ACE=45°,∵∠AEC+∠AFC=180°,∴A,B,C,F四点共圆,∴∠AFE=∠ACE=45°,∵四边形AEGF是平行四边形,∴AF∥EG,AE=FG,∴∠AFE=∠FEG=45°,∴EH=AE=FG,EH∥FG,∴四边形EHGF是平行四边形,∴EF∥HG,∴∠FEG=∠EGH=45°∵EC=AE=EH,∠CEH=90°,∴∠ECH=∠EHC=45°,∴∠ECH=∠EGH,∴E,H,G,C四点共圆,∠EGC=∠EHC=45°.本题属于几何变换综合题,考查了平行四边形的性质和判定,菱形的判定,翻折变换,四点共圆,圆周角定理等知识,解题的关键是学会添加常用辅助线,利用四点共圆解决问题,属于中考压轴题.18、(1)反比例函数的解析式为y=;(1)﹣1<x<0或x>1..【解析】

(1)利用待定系数法即可解决问题;(1)根据对称性确定点C坐标,观察图象,y1的图象在y1的图象上方的自变量的取值,即为所求.【详解】(1)∵反比例函数y1=经过点A(1,1),∴k=1,∴反比例函数的解析式为y=;(1)根据对称性可知:A、C关于原点对称,可得C(﹣1,﹣1),观察图象可知,当y1>y1时,x的取值范围为﹣1<x<0或x>1.本题考查反比例函数与一次函数的交点问题,解题的关键是灵活运用所学知识解决问题,学会利用对称性确定点C坐标.一、填空题(本大题共5个小题,每小题4分,共20分)19、x>2019【解析】

根据二次根式的定义进行解答.【详解】在实数范围内有意义,即x-20190,所以x的取值范围是x2019.本题考查了二次根式的定义,熟练掌握二次根式的定义是本题解题关键.20、1【解析】

将点(1,1)代入函数解析式即可解决问题.【详解】解:∵直线y=kx过点(1,1),

∴1=k,

故答案为:1.本题主要考查了一次函数图象上点的坐标特征,解决问题的关键是将点的坐标代入解析式,利用方程解决问题.21、【解析】

设长为3x,宽为2x,再由行李箱的长、宽、高之和不超过160cm,可得出不等式,解出即可.【详解】解:设长为3x,宽为2x,由题意,得:5x+20≤160,解得:x≤28,故行李箱宽度的最大值是28×2=56cm.故答案为:56cm.本题考查了一元一次不等式的应用,解答本题的关键是仔细审题,找到不等关系,建立不等式.22、【解析】

试题分析:根据钝角的范围即可得到关于x的不等式组,解出即可求得结果.由题意得,解得.故答案为考点:不等式组的应用点评:本题属于基础应用题,只需学生熟练掌握钝角的范围和一元一次不等式组的解法,即可完成.23、6a【解析】

根据角平分线的定义得到∠ABD=∠CBD,根据平行线的性质得到∠ADE=∠C,∠EDB=∠CBD,求得∠C=30°,根据含30°角的直角三角形的性质即可得到结论.【详解】∵BD平分∠ABC,∴∠ABD=∠CBD,∵DE∥BC,∴∠ADE=∠C,∠EDB=∠CBD,∵DE平分∠ADB,∴∠ADE=∠EDB,∴∠CBD=∠C,∴∠ABC=2∠C,∵∠A=90°,∴∠ABC+∠C=90°,∴∠C=30°,∴∠ADE=30°,∵AE=a,∴DE=2a,∵∠EDB=∠DBC,∠DBE=∠EBD,∴BE=DE=2a,∴AB=3a,∴BC=2AB=6a.故答案为:6a.本题考查角平分线的定义、平行线的性质、及含30°角的直角三角形的性质,熟练掌握30°角所对的直角边等于斜边一半的性质是解题关键.二、解答题(本大题共3个小题,共30分)24、(1)根据折叠的性质及矩形的性质可证得△ABF∽△AFE∽△FCE,再根据相似三角形的性质求解即可,1:1;(2)1:2,1:3;(3)1︰(n-1)【解析】试题分析:根据折叠的性质及矩形的性质可证得△ABF∽△AFE∽△FCE,再根据相似三角形的性质求解即可.解:(1)∵∠BAF+∠AFB=90°,∠CFE+∠AFB=90°∴∠BAF=∠CFE∵∠B=∠C=90°∴△ABF∽△FCE∴BF︰CE=AB︰FC=AF︰FE∴AB︰AF=BF︰FE∵∠B=∠AFE=90°∴△ABF∽△AFE∴△ABF∽△AFE∽△FCE∵DE︰EC=2︰1∴FE︰EC=2︰1∴BF︰FC=1︰1(2)若DE︰EC=3︰1,则BF︰FC=1︰2;若DE︰EC=4︰1,计算BF︰FC=1︰3;(3)∵DE︰EC=︰1∴FE︰EC=︰1∴BF︰FC=1︰(n-1).考点:相似三角形的综合题点评:相似三角形的综合题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.25、(1)(1,0);(2)①(2,3);②(3,1)【解析】

(1)把点A的坐标代入直线解析式可求得b=1,则直线的解析式为y=-x+1,令y=0可求得x=1,故此可求得点B的坐标;

(2)①由题l垂直平分OB可知OE=BE=2,将x=2代入直线AB的解析式可求得点D的坐标,设点P的坐标为(2,n),然后依据S△APB=S△APD+S△BPD可得到△APB的面积与n的函数关系式为S△APB=2n-1;由S△ABP=8得到关于n的方程可求得n的值,从而得到点P的坐标;

②如图1所示,过点C作CM⊥l,垂足为M,再过点B作BN⊥CM于点N.设点C的坐标为(p,q),先证明△PCM≌△CBN,得到CM=BN,PM=CN,然后由CM=BN,PM=CN列出关于p、q的方程组可求得p、q的值;如图2所示,同理可求得点C的坐标.【详解】解:(1)∵把A(0,1)代入y=-x+b得b=1,∴直线AB的函数表达式为:y=-x+1.令y=0得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论