版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页2025届江苏省大丰市小海中学数学九上开学监测模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)若分式的值为0,则的取值为()A. B.1 C. D.2、(4分)如图,在矩形ABCD中,对角线AC、BD相交于点O,AE垂直平分BO,若AE=23cm,则OD=A.2cm B.3cm C.4cm D.6cm3、(4分)已知直线l经过点A(4,0),B(0,3).则直线l的函数表达式为()A.y=﹣x+3 B.y=3x+4 C.y=4x+3 D.y=﹣3x+34、(4分)数据60,70,40,30这四个数的平均数是()A.40 B.50 C.60 D.705、(4分)如图,平行四边形ABCD的两条对角线相交于点O,点E是AB边的中点,图中已有三角形与△ADE面积相等的三角形(不包括△ADE)共有()个.A.3 B.4 C.5 D.66、(4分)下列图形具有稳定性的是()A.三角形 B.四边形 C.五边形 D.六边形7、(4分)如图,一艘巡逻船由A港沿北偏西60°方向航行5海里至B岛,然后再沿北偏东30°方向航行4海里至C岛,则A、C两港相距()A.4海里 B.海里 C.3海里 D.5海里8、(4分)在一次数学课上,张老师出示了一个题目:“如图,▱ABCD的对角线相交于点O,过点O作EF垂直于BD交AB,CD分别于点F,E,连接DF,BE,请根据上述条件,写出一个正确结论.”其中四位同学写出的结论如下:小青:OE=OF;小何:四边形DFBE是正方形;小夏:S四边形AFED=S四边形FBCE;小雨:∠ACE=∠CAF,这四位同学写出的结论中不正确的是()A.小青 B.小何 C.小夏 D.小雨二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知,则yx的值为_____.10、(4分)在2017年的理化生实验考试中某校6名学生的实验成绩统计如图,这组数据的众数是___分.11、(4分)已知一次函数y=2(x﹣2)+b的图象在y轴上的截距为5,那么b=_____.12、(4分)如图,菱形的对角线相交于点,若,则菱形的面积=____.13、(4分)如图,⊙O是△ABC的外接圆,已知∠ABO=30º,则∠ACB的为_____º.三、解答题(本大题共5个小题,共48分)14、(12分)选用适当的方法,解下列方程:(1)2x(x﹣2)=x﹣3;(2)(x﹣2)2=3x﹣615、(8分)已知△ABC和△DEC都是等腰直角三角形,C为它们的公共直角顶点,D、E分别在BC、AC边上.(1)如图1,F是线段AD上的一点,连接CF,若AF=CF;①求证:点F是AD的中点;②判断BE与CF的数量关系和位置关系,并说明理由;(2)如图2,把△DEC绕点C顺时针旋转α角(0<α<90°),点F是AD的中点,其他条件不变,判断BE与CF的关系是否不变?若不变,请说明理由;若要变,请求出相应的正确结论.16、(8分)先化简:,再从中选取一个合适的代入求值.17、(10分)在课外活动中,我们要研究一种四边形--筝形的性质.定义:两组邻边分别相等的四边形是筝形(如图1).小聪根据学习平行四边形、菱形、矩形、正方形的经验,对筝形的性质进行了探究.下面是小聪的探究过程,请补充完整:(1)根据筝形的定义,写出一种你学过的四边形满足筝形的定义的是;(2)通过观察、测量、折叠等操作活动,写出两条对筝形性质的猜想,并选取其中的一条猜想进行证明;(3)如图2,在筝形ABCD中,AB=4,BC=2,∠ABC=120°,求筝形ABCD的面积.18、(10分)先化简分式,后在,0,1,2中选择一个合适的值代入求值.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成统计表,如下表.已知该校学生人数为1200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有_________人.每周课外阅读时间(小时)0~11~2(不含1)2~3(不含2)超过3人
数710141920、(4分)如图,在平面直角坐标系中,菱形ABCD的顶点A在y轴上,且点A坐标为(0,4),BC在x轴正半轴上,点C在B点右侧,反比例函数(x>0)的图象分别交边AD,CD于E,F,连结BF,已知,BC=k,AE=CF,且S四边形ABFD=20,则k=_________.21、(4分)若一次函数的图象不经过第二象限,则的取值范围为_________0.22、(4分)如图,在中,角是边上的一点,作垂直,垂直,垂足分别为,则的最小值是______.23、(4分)如图,在Rt△ABC中,∠C=90°,AC=6,AB=10,点D、E、F是三边的中点,则△DEF的周长是______.二、解答题(本大题共3个小题,共30分)24、(8分)已知:如图,ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得△GFC.(1)求证:BE=DG;(2)若∠B=60o,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论25、(10分)学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.26、(12分)如图,在平行四边形ABCD中,BE平分∠ABC,且与AD边交于点E,∠AEB=45°,证明:四边形ABCD是矩形.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】
根据分式的值为0的条件列式求解即可.【详解】根据题意得,x+1=0且x−1≠0,解得x=−1.故选A此题考查分式的值为零的条件,难度不大2、C【解析】
由矩形的性质和线段垂直平分线的性质证出OA=AB=OB,根据AE求出OE即可解决问题.【详解】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB,∵AE=23cm∴OE=2cm,∴OD=OB=2OE=4cm;故选:C.此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.3、A【解析】
根据已知条件可直接写出函数表达式,清楚y=kx+b中k和b与x轴y轴交点之间的关系即可求解【详解】解:∵A(4,0),B(0,3),∴直线l的解析式为:y=﹣x+3;故选:A.此题主要考查一次函数的解析式,掌握k和b与直线与x轴y轴交点之间的关系是解题关键4、B【解析】
用四个数的和除以4即可.【详解】(60+70+40+30)÷4=200÷4=50.故选B.本题重点考查了算术平均数的计算,希望同学们要牢记公式,并能够灵活运用.数据x1、x2、……、xn的算术平均数:=(x1+x2+……+xn).5、C【解析】试题分析:首先利用平行四边形的性质证明△ADB≌△CBD,从而得到△CDB,与△ADB面积相等,再根据DO=BO,AO=CO,利用三角形的中线把三角形的面积分成相等的两部分可得△DOC、△COB、△AOB、△ADO面积相等,都是△ABD的一半,根据E是AB边的中点可得△ADE、△DEB面积相等,也都是△ABD的一半,从而得到S△DOC=S△COB=S△DOA=S△AOB=S△ADE=S△DEB=S△ADB.不包括△ADE共有5个三角形与△ADE面积相等,故选C.考点:平行四边形的性质6、A【解析】
由题意根据三角形具有稳定性解答.【详解】解:具有稳定性的图形是三角形.故选:A.本题考查三角形具有稳定性,是基础题,难度小,需熟记.7、B【解析】
连接AC,根据方向角的概念得到∠CBA=90°,根据勾股定理计算即可.【详解】解:如图,连接AC,由题意得,∠CBA=90°,∴AC==(海里),故选B.本题考查了勾股定理的应用和方向角问题,熟练掌握勾股定理、正确标注方向角是解题的关键.8、B【解析】
根据平行四边形的性质可得OA=OC,CD∥AB,从而得∠ACE=∠CAF,可判断出小雨的结论正确,证明△EOC≌△FOA,可得OE=OF,判断出小青的结论正确,由△EOC≌△FOA继而可得出S四边形AFED=S四边形FBCE,判断出小夏的结论正确,由△EOC≌△FOA可得EC=AF,继而可得出四边形DFBE是平行四边形,从而可判断出四边形DFBE是菱形,无法判断是正方形,判断出故小何的结论错误即可.【详解】∵四边形ABCD是平行四边形,∴OA=OC,CD∥AB,∴∠ACE=∠CAF,(故小雨的结论正确),在△EOC和FOA中,,∴△EOC≌△FOA,∴OE=OF(故小青的结论正确),∴S△EOC=S△AOF,∴S四边形AFED=S△ADC=S平行四边形ABCD,∴S四边形AFED=S四边形FBCE,(故小夏的结论正确),∵△EOC≌△FOA,∴EC=AF,∵CD=AB,∴DE=FB,DE∥FB,∴四边形DFBE是平行四边形,∵OD=OB,EO⊥DB,∴ED=EB,∴四边形DFBE是菱形,无法判断是正方形,(故小何的结论错误),故选B.本题考查了平行四边形的性质、菱形的判定、全等三角形的判定与性质、正方形的判定等,综合性较强,熟练掌握各相关性质与定理是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、-1
【解析】
根据二次根式的被开方数为非负数列不等式组解得x值,将x代入原式解得y值,即可求解.【详解】要使有意义,则:,解得:x=1,代入原式中,得:y=﹣1,∴yx=(-1)1=-1,故答案为:-1.本题考查二次根式有意义的条件、解一元一次不等式组、幂的乘方,熟练掌握二次根式的被开方数为非负数是解答的关键.10、1【解析】
根据图象写出这组数据,再根据一组数据中出现次数最多的数据叫做众数求解.【详解】解:由图可得,
这组数据分别是:24,24,1,1,1,30,
∵1出现的次数最多,
∴这组数据的众数是1.
故答案为:1.本题考查折线统计图和众数,解答本题的关键是明确众数的定义,利用数形结合的思想解答.11、1.【解析】
将原函数解析式变形为一般式,结合一次函数图象在y轴上的截距,即可得出关于b的一元一次方程,解之即可得出结论.【详解】∵y=2(x﹣2)+b=2x+b﹣4,且一次函数y=2(x﹣2)+b的图象在y轴上的截距为5,∴b﹣4=5,解得:b=1.故答案为:1.本题考查了一次函数图象上点的坐标特征,牢记截距的定义是解题的关键.12、3.【解析】
先求出菱形对角线AC和BD的长度,利用菱形面积等于对角线乘积的一半求解即可.【详解】因为四边形ABCD是菱形,所以AC⊥BD.在Rt△AOB中,利用勾股定理求得BO=1.∴BD=6,AC=2.∴菱形ABCD面积为×AC×BD=3.故答案为:3.本题主要考查了菱形的性质,解题的关键是熟记菱形面积的求解方法,运用对角线求解面积是解题的最优途径.13、60°【解析】
首先根据等腰三角形的性质及三角形内角和定理求出∠AOB的度数,再利用圆周角与圆心角的关系求出∠ACB的度数.【详解】解:△AOB中,OA=OB,∠ABO=30°;
∴∠AOB=180°-2∠ABO=120°;
∴∠ACB=∠AOB=60°.故选A.本题考查圆周角定理的应用,涉及到的知识点还有:等腰三角形的性质以及三角形内角和定理.三、解答题(本大题共5个小题,共48分)14、(1)x=1或x=(2)x1=2,x2=1.【解析】试题分析:(1)先化为一般式,再分解因式即可求解;(2)先移项后,提取公因式分解因式,即可求解.试题解析:(1)2x(x﹣2)=x﹣3,2x2﹣1x+3=0,(x-1)(2x-3)=0,x-1=0或2x-3=0,x=1或x=;(2)(x﹣2)2=3x﹣6,(x﹣2)2-3(x﹣2)=0,(x﹣2)(x﹣2-3)=0,x﹣2=0或x﹣1=0,x1=2,x2=1.15、(1)①证明见解析;②BE=2CF,BE⊥CF;(2)仍然有BE=2CF,BE⊥CF.【解析】
(1)①如图1,由AF=CF得到∠1=∠2,则利用等角的余角相等可得∠3=∠ADC,然后根据等腰三角形的判定定理得FD=FC,易得AF=FD;
②先利用等腰直角三角形的性质得CA=CB,CD=CE,则可证明△ADC≌△BEC得到AD=BE,∠1=∠CBE,由于AD=2CF,∠1=∠2,则BE=2CF,再证明∠CBE+∠3=90°,于是可判断CF⊥BE;
(2)延长CF到G使FG=CF,连结AG、DG,如图2,易得四边形ACDG为平行四边形,则AG=CD,AG∥CD,于是根据平行线的性质得∠GAC=180°-∠ACD,所以CD=CE=AG,再根据旋转的性质得∠BCD=α,所以∠BCE=∠DCE+∠BCD=90°+α=90°+90°-∠ACD=180°-∠ACD,得到∠GAC=∠ECB,接着可证明△AGC≌△CEB,得到CG=BE,∠2=∠1,所以BE=2CF,和前面一样可证得CF⊥BE.【详解】(1)①证明:如图1,∵AF=CF,∴∠1=∠2,∵∠1+∠ADC=90°,∠2+∠3=90°,∴∠3=∠ADC,∴FD=FC,∴AF=FD,即点F是AD的中点;②BE=2CF,BE⊥CF.理由如下:∵△ABC和△DEC都是等腰直角三角形,∴CA=CB,CD=CE,在△ADC和△BEC中,∴△ADC≌△BEC,∴AD=BE,∠1=∠CBE,而AD=2CF,∠1=∠2,∴BE=2CF,而∠2+∠3=90°,∴∠CBE+∠3=90°,∴CF⊥BE;(2)仍然有BE=2CF,BE⊥CF.理由如下:延长CF到G使FG=CF,连结AG、DG,如图2,∵AF=DF,FG=FC,∴四边形ACDG为平行四边形,∴AG=CD,AG∥CD,∴∠GAC+∠ACD=180°,即∠GAC=180°﹣∠ACD,∴CD=CE=AG,∵△DEC绕点C顺时针旋转α角(0<α<90°),∴∠BCD=α,∴∠BCE=∠DCE+∠BCD=90°+α=90°+90°﹣∠ACD=180°﹣∠ACD,∴∠GAC=∠ECB,在△AGC和△CEB中,∴△AGC≌△CEB,∴CG=BE,∠2=∠1,∴BE=2CF,而∠2+∠BCF=90°,∴∠BCF+∠1=90°,∴CF⊥BE.故答案为(1)①证明见解析;②BE=2CF,BE⊥CF;(2)仍然有BE=2CF,BE⊥CF.本题考查旋转的性质,全等三角形的判定与性质,等腰直角三角形和平行四边形的性质.16、,【解析】
根据分式的运算法则先化简,再选择合适的值带入即可求出答案.【详解】解:原式,由分式有意义的条件可知:,且,∴当时,原式.本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型,需要注意选择的值要使分式有意义.17、(1)菱形;(2)筝形是轴对称图形;筝形的对角线互相垂直;筝形的一组对角相等.证明见解析;(3)4.【解析】
(1)根据筝形的定义解答即可;(2)根据全等三角形的判定和性质证明;(3)连接AC,作CE⊥AB交AB的延长线于E,根据正弦的定义求出CE,根据三角形的面积公式计算即可.【详解】(1)∵菱形的四条边相等,∴菱形是筝形,故答案为:菱形;(2)筝形是轴对称图形;筝形的对角线互相垂直;筝形的一组对角相等.已知:四边形ABCD是筝形,求证:∠B=∠D,证明:如图1,连接AC,在△ABC和△ADC中,,∴△ABC≌△ADC,∴∠B=∠D;(3)如图2,连接AC,作CE⊥AB交AB的延长线于E,∵∠ABC=120°,∴∠EBC=60°,又BC=2,∴CE=BC×sin∠EBC=,∴S△ABC=×AB×CE=2,∵△ABC≌△ADC,∴筝形ABCD的面积=2S△ABC=4.本题考查的是筝形的定义和性质、菱形的性质、全等三角形的判定和性质,正确理解筝形的性质、熟记锐角三角函数的定义是解题的关键.18、,.【解析】
先对进行化简,再选择-1,0,1代入计算即可.【详解】原式因为且所以当时,原式当时,原式考查了整式的化简求值,解题关键是熟记分式的运算法则.一、填空题(本大题共5个小题,每小题4分,共20分)19、1【解析】试题分析:先求出每周课外阅读时间在1~2(不含1)小时的学生所占的百分比,再乘以全校的人数,即可得出答案.解:根据题意得:1200×=1(人),答:估计每周课外阅读时间在1~2(不含1)小时的学生有1人;故答案为1.考点:用样本估计总体.20、【解析】
由题意可设E点坐标为(,4),则有AE=,根据AE=CF,可得CF=,再根据四边形ABCD是菱形,BC=k,可得CD=6CF,再根据S菱形ABCD=S四边形ABFD+S△BCF,S四边形ABFD=20,从而可得S菱形ABCD=24,根据S菱形ABCD=BC•AO,即可求得k的值.【详解】由题意可设E点坐标为(,4),则有AE=,∵AE=CF,∴CF=,∵四边形ABCD是菱形,BC=k,∴CD=BC=k,∴CD=6CF,∴S菱形ABCD=12S△BCF,∵S菱形ABCD=S四边形ABFD+S△BCF,S四边形ABFD=20,∴S菱形ABCD=,∵S菱形ABCD=BC•AO,∴4k=,∴k=,故答案为.本题考查了菱形的性质、菱形的面积,由已知推得S菱形ABCD=6S△BCF是解题的关键.21、【解析】
根据题意可知,图象经过一三象限或一三四象限,可得b=1或b<1.【详解】解:一次函数y=2x+b的图象不经过第二象限,则可能是经过一三象限或一三四象限,经过一三象限时,b=1;经过一三四象限时,b<1.故b≤1.故答案是:≤.此题主要考查了一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:k>1时,直线必经过一、三象限;k<1时,直线必经过二、四象限;b>1时,直线与y轴正半轴相交;b=1时,直线过原点;b<1时,直线与y轴负半轴相交.22、【解析】
根据已知条件得出四边形AEPF为矩形,得出EF=AP,要使EF最小,只要AP最小即可,根据垂线段最短得出即可.【详解】连接AP,四边形AFPE是矩形,要使EF最小,只要AP最小即可,过点A作于P,此时AP最小,在直角三角形中,由勾股定理得:BC=5,由三角形面积公式得:,即,故答案为:.本题是矩形的判定与性质和直角三角形结合考查的题型,找出与EF相等的线段,结合垂线段最短的性质是解题的关键.23、1【解析】
先根据勾股定理求出BC,再根据三角形中位线定理求出△DEF的三边长,然后根据三角形的周长公式计算即可.【详解】解:在Rt△ABC中,∵∠C=90°,AC=6,AB=10,∴BC==8,∵点D、E、F是三边的中点,∴DE=AC=3,DF=AB=5,EF=BC=4,∴△DEF的周长=3+4+5=1.故答案为:1.本题考查的是勾股定理和三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 移动开发终端课程设计
- 2025版定制化字画艺术品购销合同书3篇
- 2025至2030年中国欠压报警系统行业投资前景及策略咨询研究报告
- 2025年新型环保材料买卖合同及售后服务保障协议
- 涡轮驱动器课课程设计
- 温室建筑与结构课程设计
- 戏曲鼓板教学课程设计
- 2024年度车辆处置离婚协议书夫妻共同财产分割执行细则3篇
- 2025年度智能家居系统安装与维护劳务合同范本3篇
- 2024年私人游艇租赁协议标准版3篇
- #2锅炉炉膛内脚手架搭设及拆除施工方案
- ASME标准钢号和中国钢号对照表
- 颈静脉球体瘤
- 教材中医方剂学
- 2022年2022年跨栏教案-程璐上交
- 2022年2022年电子信息系统机房设计规范
- 青海省互助丰台沟隧道施工组织设计
- CMMI3培训、咨询及评估合同
- 课堂教学如何培养地理核心素养(课堂PPT)
- 宾馆电视机购销合同协议
- 风机风管拆除制作安装施工方案
评论
0/150
提交评论