版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页2025届吉林九台区加工河中学九年级数学第一学期开学质量跟踪监视试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如果a<b,则下列式子错误的是()A.a+7<b+7 B.a﹣5<b﹣5C.﹣3a<﹣3b D.2、(4分)下列各组数中是勾股数的为()A.1、2、3 B.4、5、6 C.3、4、5 D.7、8、93、(4分)在平面直角坐标系中,点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4、(4分)已知一次函数b是常数且,x与y的部分对应值如下表:x0123y6420那么方程的解是A. B. C. D.5、(4分)如图,矩形ABCD的面积为10cm2,它的两条对角线交于点O1,以AB、AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交于点O2,同样以AB、AO2为两邻边作平行四边形ABC2O2,…,依此类推,则平行四边形ABCnOn的面积为()A.cm2 B.cm2 C.cm2 D.cm26、(4分)以下列各组数为边长能构成直角三角形的是()A.6,12,13 B.3,4,7 C.8,15,16 D.5,12,137、(4分)平行四边形中,若,则的度数为().A. B. C. D.8、(4分)如图,在△ABC中,点E,F分别是边BC上两点,ED垂直平分AB,FG垂直平分AC,连接AE,AF,若∠BAC=115°,则∠EAF的大小为()A.45° B.50° C.60° D.65°二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)关于x的方程=1的解是正数,则m的取值范围是________
.10、(4分)如图,正方形ABCD的边长为2,MN∥BC分别交AB、CD于点M、N,在MN上任取两点P、Q,那么图中阴影部分的面积是_____.11、(4分)已知y轴上的点P到原点的距离为7,则点P的坐标为_____.12、(4分)一次函数中,当时,<1;当时,>0则的取值范围是.13、(4分)一轮船以16海里/时的速度从A港向东北方向航行,另一艘船同时以12海里/时的速度从A港向西北方向航行,经过1小时后,它们相距______________海里.三、解答题(本大题共5个小题,共48分)14、(12分)如图平面直角坐标系中,点,在轴上,,点在轴上方,,,线段交轴于点,,连接,平分,过点作交于.(1)点的坐标为.(2)将沿线段向右平移得,当点与重合时停止运动,记与的重叠部分面积为,点为线段上一动点,当时,求的最小值;(3)当移动到点与重合时,将绕点旋转一周,旋转过程中,直线分别与直线、直线交于点、点,作点关于直线的对称点,连接、、.当为直角三角形时,直接写出线段的长.15、(8分)已知如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A、B两点,A点坐标是(﹣2,1),B点坐标(1,n);(1)求出k,b,m,n的值;(2)求△AOB的面积;(3)直接写出一次函数的函数值大于反比例函数的函数值的x的取值范围.16、(8分)已知在等腰三角形中,是的中点,是内任意一点,连接,过点作,交的延长线于点,延长到点,使得,连接.(1)如图1,求证:四边形是平行四边形;(2)如图2,若,求证:且;17、(10分)如图,直线y=﹣2x+7与x轴、y轴分别相交于点C、B,与直线y=x相交于点A.(1)求A点坐标;(2)求△OAC的面积;(3)如果在y轴上存在一点P,使△OAP是以OA为底边的等腰三角形,求P点坐标;(4)在直线y=﹣2x+7上是否存在点Q,使△OAQ的面积等于6?若存在,请求出Q点的坐标,若不存在,请说明理由.18、(10分)如图,矩形OBCD位于直角坐标系中,点B(,0),点D(0,m)在y轴正半轴上,点A(0,1),BE⊥AB,交DC的延长线于点E,以AB,BE为边作▱ABEF,连结AE.(1)当m=时,求证:四边形ABEF是正方形.(2)记四边形ABEF的面积为S,求S关于m的函数关系式.(3)若AE的中点G恰好落在矩形OBCD的边上,直接写出此时点F的坐标.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)9的算术平方根是.20、(4分)若分式值为0,则的值为__________.21、(4分)已知点A(﹣1,a),B(2,b)在函数y=﹣3x+4的图象上,则a与b的大小关系是_____.22、(4分)己知三角形三边长分别为,,,则此三角形的最大边上的高等于_____________.23、(4分)如图,直线与轴交于点,依次作正方形、正方形、……正方形,使得点、…,在直线上,点在轴上,则点的坐标是________二、解答题(本大题共3个小题,共30分)24、(8分)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.25、(10分)现将三张形状、大小完全相同的平行四边形透明纸片分别放在方格纸中,方格纸中的每个小正方形的边长均为1,并且平行四边形纸片的每个顶点与小正方形的顶点重合(如图①、图②、图③).图②矩形(正方形),分别在图①、图②、图③中,经过平行四边形纸片的任意一个顶点画一条裁剪线,沿此裁剪线将平行四边形纸片裁成两部分,并把这两部分重新拼成符合下列要求的几何图形.要求:(1)在左边的平行四边形纸片中画一条裁剪线,然后在右边相对应的方格纸中,按实际大小画出所拼成的符合要求的几何图形.(2)裁成的两部分在拼成几何图形时要互不重叠且不留空隙.(3)所画出的几何图形的各顶点必须与小正方形的顶点重合.26、(12分)如右图所示,直线y1=-2x+3和直线y2=mx-1分别交y轴于点A,B,两直线交于点C(1,n).(1)求m,n的值;(2)求ΔABC的面积;(3)请根据图象直接写出:当y1<y2时,自变量的取值范围.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
根据不等式的性质,逐项判断即可.【详解】解:∵a<b,∴a+7<b+7,故选项A不符合题意;
∵a<b,∴a-5<b-5,故选项B不符合题意;
∵a<b,∴-3a>-3b,故选项C符合题意;
∵a<b,∴,故选项D不符合题意.
故选:C.此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.2、C【解析】
根据勾股定理的逆定理分别对各组数据进行检验即可.【详解】解:A.∵12+22=5≠32=9,∴不是勾股数,故A错误;B.∵42+52=41≠62=36,∴不是勾股数,故B错误;C.∵32+42=25=52=25,∴是勾股数,故C正确;D.∵72+82=113≠92=81,∴不是勾股数,故D错误.故选C.本题比较简单,只要对各组数据进行检验,看各组数据是否符合勾股定理的逆定理即可.3、B【解析】
应先判断出所求点P的横坐标、纵坐标的符号,进而判断其所在的象限.【详解】∵点P(−1,2)的横坐标−1<0,纵坐标2>0,∴点P在第二象限。故选:B.此题考查点的坐标,难度不大4、C【解析】
因为一次函数b是常数且,x与y的部分对应值如表所示,求方程的解即为y=0时,对应x的取值,根据表格找出y=0时,对应x的取值即可求解.【详解】根据题意可得:的解是一次函数中函数值y=0时,自变量x的取值,所以y=0时,x=1,所以方程的解是x=1,故选C.本题主要考查一元一次方程与一次函数的关系,解决本题的关键是要熟练掌握一次函数与一元一次方程的关系.5、D【解析】
根据矩形的性质对角线互相平分可知O1是AC与DB的中点,根据等底同高得到S△ABO1=S矩形,又ABC1O1为平行四边形,根据平行四边形的性质对角线互相平分,得到O1O2=BO2,所以S△ABO2=S矩形,…,以此类推得到S△ABO5=S矩形,而S△ABO5等于平行四边形ABC5O5的面积的一半,根据矩形的面积即可求出平行四边形ABC5O5和平行四边形AB∁nOn的面积.【详解】解:∵设平行四边形ABC1O1的面积为S1,∴S△ABO1=S1,又∵S△ABO1=S矩形,∴S1=S矩形=5=;设ABC2O2为平行四边形为S2,∴S△ABO2=S2,又∵S△ABO2=S矩形,∴S2=S矩形=;,…,∴平行四边形AB∁nOn的面积为(cm2).故选D.此题考查了矩形及平行四边形的性质,要求学生审清题意,找出面积之间的关系,归纳总结出一般性的结论.考查了学生观察、猜想、验证及归纳总结的能力.6、D【解析】解:A.62+122≠132,不能构成直角三角形.故选项错误;B.32+42≠72,不能构成直角三角形.故选项错误;C.82+152≠162,不能构成直角三角形.故选项错误;D.52+122=132,能构成直角三角形.故选项正确.故选D.7、B【解析】
根据平行四边形的性质:邻角互补,对角线相等即可解答【详解】在平行四边形中,∴,故选:B.本题考查平行四边形的性质,解题关键是熟练掌握平行四边形的角的性质:邻角互补,对角线相等.8、B【解析】
根据三角形内角和定理得到∠B+∠C=65°,根据线段垂直平分线的性质得到EA=EB,FA=FC,根据等腰三角形的性质得到∠EAB=∠B,∠FAC=∠C,结合图形计算即可.【详解】解:∵∠BAC=115°,∴∠B+∠C=180°-115°=65°,∵ED垂直平分AB,FG垂直平分AC,∴EA=EB,FA=FC,∴∠EAB=∠B,∠FAC=∠C,∴∠EAB+∠FAC=∠B+∠C=65°,∴∠EAF=∠BAC-(∠EAB+∠FAC)=50°,故选:B.本题考查的是线段的垂直平分线的性质、等腰三角形的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、m<﹣2且m≠﹣1【解析】
首先根据=1,可得x=-m-2;然后根据关于x的方程=1的解是正数,求出m的取值范围即可.【详解】∵=1,∴x=-m-2,∵关于x的方程=1的解是正数,∴-m-2>0,解得m<-2,又∵x=-m-2≠2,∴m≠-1,∴m的取值范围是:m<-2且m≠-1.故答案为:m<-2且m≠-1.此题主要考查了分式方程的解,要熟练掌握,解答此题的关键是要明确:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.10、1【解析】
阴影部分的面积等于正方形的面积减去和的面积和.而两个三角形等底即为正方形的边长,它们的高的和等于正方形的边长,得出阴影部分的面积正方形面积的一半即可.【详解】解:由图知,阴影部分的面积等于正方形的面积减去和的面积.而点到的距离与点到的距离的和等于正方形的边长,即和的面积的和等于正方形的面积的一半,故阴影部分的面积.故答案为:1.本题考查正方形的性质,正方形的面积,三角形的面积公式灵活运用,注意图形的特点.11、(0,7)或(0,-7)【解析】
点P在y轴上,分两种情况:正方向和负方向,即可得出点P的坐标为(0,7)或(0,-7).【详解】∵点P在y轴上,分两种情况:正方向和负方向,点P到原点的距离为7∴点P的坐标为(0,7)或(0,-7).此题主要考查平面直角坐标系中点的坐标,只告知点到原点的距离,要分两种情况,不要遗漏.12、.【解析】根据题意,得.13、20【解析】
根据题意画出图形,根据题目中AB、AC的夹角可知它为直角三角形,然后根据勾股定理解答.【详解】如图,∵由图可知AC=16×1=16(海里),
AB=12×1=12(海里),
在Rt△ABC中,BC==20(海里).
故它们相距20海里.
故答案为:20本题考查的是勾股定理,正确的掌握方位角的概念,从题意中得出△ABC为直角三角形是关键.三、解答题(本大题共5个小题,共48分)14、(1)C(3,3);(3)最小值为3+3;(3)D3H的值为3-3或3+3或1-1或1+1.【解析】
(1)想办法求出A,D,B的坐标,求出直线AC,BC的解析式,构建方程组即可解决问题.
(3)如图3中,设BD交O′D′于G,交A′D′于F.作PH⊥OB于H.利用三角形的面积公式求出点D坐标,再证明PH=PB,把问题转化为垂线段最短即可解决问题.
(3)在旋转过程中,符号条件的△GD3H有8种情形,分别画出图形一一求解即可.【详解】(1)如图1中,
在Rt△AOD中,∵∠AOD=93°,∠OAD=33°,OD=3,
∴OA=OD=6,∠ADO=63°,
∴∠ODC=133°,
∵BD平分∠ODC,
∴∠ODB=∠ODC=63°,
∴∠DBO=∠DAO=33°,
∴DA=DB=1,OA=OB=6,
∴A(-6,3),D(3,3),B(6,3),
∴直线AC的解析式为y=x+3,
∵AC⊥BC,
∴直线BC的解析式为y=-x+6,
由,解得,
∴C(3,3).
(3)如图3中,设BD交O′D′于G,交A′D′于F.作PH⊥OB于H.
∵∠FD′G=∠D′GF=63°,
∴△D′FG是等边三角形,
∵S△D′FG=,
∴D′G=,
∴DD′=GD′=3,
∴D′(3,3),
∵C(3,3),
∴CD′==3,
在Rt△PHB中,∵∠PHB=93°,∠PBH=33°,
∴PH=PB,
∴CD'+D'P+PB=3+D′P+PH≤3+D′O′=3+3,
∴CD'+D'P+PB的最小值为3+3.
(3)如图3-1中,当D3H⊥GH时,连接ED3.
∵ED=ED3,EG=EG.DG=D3G,
∴△EDG≌△ED3G(SSS),
∴∠EDG=∠ED3G=33°,∠DEG=∠D3EG,
∵∠DEB=133°,∠A′EO′=63°,
∴∠DEG+∠BEO′=63°,
∵∠D3EG+∠D3EO′=63°,
∴∠D3EO′=∠BEO′,
∵ED3=EB,E=EH,
∴△EO′D3≌△EO′B(SAS),
∴∠ED3H=∠EBH=33°,HD3=HB,
∴∠CD3H=63°,
∵∠D3HG=93°,
∴∠D3GH=33°,设HD3=BH=x,则DG=GD3=3x,GH=x,
∵DB=1,
∴3x+x+x=1,
∴x=3-3.
如图3-3中,当∠D3GH=93°时,同法可证∠D3HG=33°,易证四边形DED3H是等腰梯形,
∵DE=ED3=DH=1,可得D3H=1+3×1×cos33°=1+1.
如图3-3中,当D3H⊥GH时,同法可证:∠D3GH=33°,
在△EHD3中,由∠D3HE=15°,∠HD3E=33°,ED3=1,可得D3H=1×,
如图3-1中,当DG⊥GH时,同法可得∠D3HG=33°,
设DG=GD3=x,则HD3=BH=3x,GH=x,
∴3x+x=1,
∴x=3-3,
∴D3H=3x=1-1.
如图3-5中,当D3H⊥GH时,同法可得D3H=3-3.
如图3-6中,当DGG⊥GH时,同法可得D3H=1+1.
如图3-7中,如图当D3H⊥HG时,同法可得D3H=3+3.
如图3-8中,当D3G⊥GH时,同法可得HD3=1-1.
综上所述,满足条件的D3H的值为3-3或3+3或1-1或1+1.此题考查几何变换综合题,解直角三角形,旋转变换,一次函数的应用,等边三角形的判定和性质,垂线段最短,全等三角形的判定和性质等知识,解题的关键是学会构建一次函数确定交点坐标,学会用分类讨论的思想思考问题.15、(1)k=﹣1,b=﹣1,m=﹣2,n=﹣2;(2)S△AOB=;(3)x<﹣2或0<x<1【解析】
(1)将点A,点B坐标代入两个解析式可求k,b,m,n的值;(2)由题意可求点C坐标,根据△AOB的面积=△ACO面积+△BOC面积,可求△AOB的面积;(3)根据一次函数图象在反比例图象的上方,可求x的取值范围【详解】解:(1)∵反比例函数y=的图象过点A(﹣2,1),B(1,n)∴m=﹣2×1=﹣2,m=1×n∴n=﹣2∴B(1,﹣2)∵一次函数y=kx+b的图象过点A,点B∴解得:k=﹣1,b=﹣1∴直线解析式y=﹣x﹣1(2)∵直线解析式y=﹣x﹣1与x轴交于点C∴点C(﹣1,0)∴S△AOB=×1×1+×1×2=(3)由图象可得:x<﹣2或0<x<1本题考查了反比例函数图象与一次函数图象的交点问题,熟练运用图象上的点的坐标满足图象的解析式是本题的关键.16、(1)见解析;(2)见解析;【解析】
(1)利用平行线的性质证明,即可解答(2)连接,根据题意得出,再由(1)得出,得到是的中位线,即可解答【详解】(1)证明:.是的中点,.又,(ASA)..又,四边形是平行四边形.(2)证明:如图1,连接,图1是的中点,...由(1)知,,又由(1)知,.,是的中位线..,.此题考查等腰三角形的性质,平行线的性质,全等三角形的判定与性质,解题关键在于作辅助线17、(1)A点坐标是(2,3);(2)=;(3)P点坐标是(0,);(4)点Q是坐标是(,)或(,-).【解析】
解析联立方程,解方程即可求得;C点位直线y=﹣2x+7与x轴交点,可得C点坐标为(,0),由(1)得A点坐标,可得的值;(3)设P点坐标是(0,y),根据勾股定理列出方程,解方程即可求得;(4)分两种情况:①当Q点在线段AB上:作QD⊥y轴于点D,则QD=x,根据=-列出关于x的方程解方程求得即可;②当Q点在AC的延长线上时,作QD⊥x轴于点D,则QD=-y,根据=-列出关于y的方程解方程求得即可.【详解】解(1)解方程组:得:,A点坐标是(2,3);(2)C点位直线y=﹣2x+7与x轴交点,可得C点坐标为(,0)==(3)设P点坐标是(0,y),△OAP是以OA为底边的等腰三角形,OP=PA,,解得y=,P点坐标是(0,),故答案为(0,);(4)存在;由直线y=-2x+7可知B(0,7),C(,0),==<6,==7>6,Q点有两个位置:Q在线段AB上和AC的延长线上,设点Q的坐标是(x,y),当Q点在线段AB上:作QD⊥y轴于点D,如图1,则QD=x,=-=7-6=1,OBQD=1,即:7x=1,x=,把x=代入y=-2x+7,得y=,Q的坐标是(,),当Q点在AC的延长线上时,作QD⊥x轴于点D,如图2则QD=-y,=-=6-=,OCQD=,即:,y=-,把y=-代入y=-2x+7,解得x=Q的坐标是(,-),综上所述:点Q是坐标是(,)或(,-).本题是一次函数的综合题,考查了交点的求法,勾股定理的应用,三角形面积的求法等,分类讨论思想的运用是解题的关键.18、(1)证明见解析;(2)S=m(m>0);(3)满足条件的F坐标为(,2)或(,4).【解析】
(1)只要证明△ABO≌△CBE,可得AB=BE,即可解决问题;
(2)在Rt△AOB中利用勾股定理求出AB,证明△ABO∽△CBE,利用相似三角形的性质求出BE即可解决问题;
(3)分两种情形I.当点A与D重合时,II.当点G在BC边上时,画出图形分别利用直角三角形和等边三角形求解即可.【详解】解:(1)如图1中,∵m=,B(,0),∴D(0,),∴OD=OB=,∴矩形OBCD是正方形,∴BO=BC,∵∠OBC=∠ABE=90°,∴∠ABO=∠CBE,∵∠BOA=∠BCE=90°,∴△ABO≌△CBE,∴AB=BE,∵四边形ABEF是平行四边形,∴四边形ABEF是菱形,∵∠ABE=90°,∴四边形ABEF是正方形.(2)如图1中,在Rt△AOB中,∵OA=1,OB=,∴AB==2,∵∠OBC=∠ABE=90°,∴∠OBA=∠CBE,∵∠BOA=∠BCE=90°,∴△ABO∽△CBE,∴,∴,∴BE=m,∴S=AB•BE=m(m>0).(3)①如图2中,当点A与D重合时,点G在矩形OBCD的边CD上.∵tan∠ABO=,∴∠ABO=30°,在Rt△ABE中,∠BAE=∠ABO=30°,AB=2,∴AE=,∵AG=GE,∴AG=,∴G(,1),设F(m,n),则有,,∴m=,n=2,∴F(,2).②如图3中,当点G在BC边上时,作GM⊥AB于M.∵四边形ABEF是矩形,∴GB=GA,∵∠GBO=90°,∠ABO=30°,∴∠ABG=60°,∴△ABG是等边三角形,∴BG=AB=2,∵FG=BG,∴F(,4),综上所述,满足条件的F坐标为(,2)或(,4).本题考查四边形综合题、矩形的性质、正方形的判定和性质、全等三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.一、填空题(本大题共5个小题,每小题4分,共20分)19、1.【解析】
根据一个正数的算术平方根就是其正的平方根即可得出.【详解】∵,∴9算术平方根为1.故答案为1.本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.20、-1【解析】
根据分式值为0的条件进行求解即可.【详解】由题意得,x+1=0,解得x=-1,故答案为:-1.本题考查了分式值为0的条件,熟练掌握分式值为0时,分子为0且分母不为0是解题的关键.21、a>b【解析】试题解析:∵点A(-1,a),B(2,b)在函数y=-3x+4的图象上,∴a=3+4=7,b=-6+4=-2,∵7>-2,∴a>b.故答案为a>b.22、【解析】分析:根据勾股定理的逆定理可判断三角形为直角三角形,然后根据直角三角形的面积求解即可.详解:∵三角形三边长分别为,,∴∴三角形是直角三角形∴∴高为故答案为.点睛:此题主要考查了勾股定理的逆定理的应用,利用勾股定理的逆定理判断此三角形是直角三角形是解题关键.23、(22019-1,22018)【解析】
先求出直线y=x+1与y轴的交点坐标即可得出A1的坐标,故可得出OA1的长,根据四边形A1B1C1O是正方形即可得出B1的坐标,再把B1的横坐标代入直线y=x+1即可得出A1的坐标,同理可得出B2,B3的坐标,可以得到规律:Bn(2n-1,2n-1),据此即可求解点B2019的坐标.【详解】解:∵令x=0,则y=1,
∴A1(0,1),
∴OA1=1.
∵四边形A1B1C1O是正方形,
∴A1B1=1,
∴B1(1,1).
∵当x=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度版权作品代理出版包销合同
- 水平测量仪测量用市场发展预测和趋势分析
- 胆固醇检测仪市场需求与消费特点分析
- 2024年度文化创意产业投资基金合同
- 2024年度版权许可使用合同许可使用范围和许可期限
- 金属加工用液压式冲床项目评价分析报告
- 2024年度健身服务合同服务内容描述及服务费用计算
- 2024年度地铁车厢窗帘采购与安装合同
- 2024年度版权购买合同:某影视公司购买电影版权
- 2024年度版权转让合同:电影作品所有权转让
- 2025届江苏省南通市海安市海安高级中学高三下学期一模考试生物试题含解析
- 2024年全国职业院校技能大赛(节水系统安装与维护赛项)考试题库(含答案)
- 肌钙蛋白-石磊
- 水利工程监理资料
- 《大学生职业生涯规划》 教案全套 宗敏-第1-10章 生涯规划导论-创业
- 统编版2024年新教材七年级上册道德与法治8.2《敬畏生命》教案
- 2024至2030年中国托管银行市场前景预测及行业投资潜力预测报告
- 工会工作制度汇编
- 艺术疗法行业发展现状及潜力分析研究报告
- 0958会议记录-会议纪要表格模板6篇
- 食品智能化加工技术
评论
0/150
提交评论