2025届河南省新乡市名校九年级数学第一学期开学质量检测模拟试题【含答案】_第1页
2025届河南省新乡市名校九年级数学第一学期开学质量检测模拟试题【含答案】_第2页
2025届河南省新乡市名校九年级数学第一学期开学质量检测模拟试题【含答案】_第3页
2025届河南省新乡市名校九年级数学第一学期开学质量检测模拟试题【含答案】_第4页
2025届河南省新乡市名校九年级数学第一学期开学质量检测模拟试题【含答案】_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共4页2025届河南省新乡市名校九年级数学第一学期开学质量检测模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,点D,E分别在直角边AC,BC上,且∠DOE=90°,DE交OC于点P,则下列结论:(1)AD+BE=AC;(2)AD2+BE2=DE2;(3)△ABC的面积等于四边形CDOE面积的2倍;(4)OD=OE,其中正确的结论有()A. B. C. D.2、(4分)若等腰的周长是,一腰长为,底边长为,则与的函数关系式及自变量的取值范围是A. B.C. D.3、(4分)下列命题中正确的是()A.一组对边相等,另一组对边平行的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分且相等的四边形是正方形4、(4分)下列条件:①两组对边分别平行②两组对边分别相等③两组对角分别相等④两条对角线互相平分其中,能判定四边形是平行四边形的条件的个数是()A.1 B.2 C.3 D.45、(4分)如果是任意实数,下列各式中一定有意义的是()A. B. C. D.6、(4分)如图,菱形的边长为2,∠ABC=45°,则点D的坐标为()A.(2,2) B.(2+,) C.(2,) D.(,)7、(4分)a,b,c为常数,且,则关于x的方程根的情况是A.有两个相等的实数根 B.有两个不相等的实数根C.无实数根 D.有一根为08、(4分)上复习课时李老师叫小聪举出一些分式的例子,他举出了:,,其中正确的个数为().A.2 B.3 C.4 D.5二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)在菱形ABCD中,∠A=60,对角线BD=3,以BD为底边作顶角为120的等腰三角形BDE,则AE的长为______.10、(4分)如图,是的中位线,平分交于,,则的长为________.11、(4分)在中,若∠A=38°,则∠C=____________12、(4分)如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为20cm,则四边形ABFD的周长为________.13、(4分)若二次根式有意义,则的取值范围是______.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在矩形中,为对角线,点为边上一动点,连结,过点作,垂足为,连结.(1)证明:;(2)当点为的中点时,若,求的度数;(3)当点运动到与点重合时,延长交于点,若,则.15、(8分)如图,直线的解析式为,且与轴交于点D,直线经过点、,直线、交于点C.(1)求直线的解析表达式;(2)求的面积;(3)在直线上存在异于点C的另一点P,使得与的面积相等,请求出点P的坐标.16、(8分)定义:如图(1),,,,四点分别在四边形的四条边上,若四边形为菱形,我们称菱形为四边形的内接菱形.动手操作:(1)如图2,网格中的每个小四边形都为正方形,每个小四边形的顶点叫做格点,由个小正方形组成一个大正方形,点、在格点上,请在图(2)中画出四边形的内接菱形;特例探索:(2)如图3,矩形,,点在线段上且,四边形是矩形的内接菱形,求的长度;拓展应用:(3)如图4,平行四边形,,,点在线段上且,①请你在图4中画出平行四边形的内接菱形,点在边上;②在①的条件下,当的长最短时,的长为__________17、(10分)在菱形ABCD中,∠ABC=60°,P是射线BD上一动点,以AP为边向右侧作等边△APE,连接CE.(1)如图1,当点P在菱形ABCD内部时,则BP与CE的数量关系是,CE与AD的位置关系是.(2)如图2,当点P在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;(3)如图2,连接BE,若AB=2,BE=2,求AP的长.18、(10分)甲骑自行年,乙乘坐汽车从A地出发沿同一路线匀速前往B地,甲先出发.设甲行驶的时间为x(h),甲、乙两人距出发点的路程S甲(km)、S乙(km)关于x的函数图象如图1所示,甲、乙两人之同的距离y(km)关于x的函数图象如图2所示,请你解决以下问题:(1)甲的速度是__________km/h,乙的速度是_______km/h;(2)a=_______,b=_______;(3)甲出发多少时间后,甲、乙两人第二次相距7.5km?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)大型古装历史剧《那年花开月正圆》火了“晋商”一词,带动了晋商文化旅游的发展.图是清代某晋商大院艺术窗的一部分,图中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的面积和是49cm2,则其中最大的正方形S的边长为________cm.20、(4分)若设A=,当=4时,记此时A的值为;当=3时,记此时A的值为;……则关于的不等式的解集为______.21、(4分)直线y=﹣2x+m﹣3的图象经过x轴的正半轴,则m的取值范围为.22、(4分)如图,正方形CDEF内接于,,,则正方形的面积是________.23、(4分)若一次函数的图象不经过第二象限,则的取值范围为_________0.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在平行四边形ABCD中,AE平分∠BAD交BC于点E.(1)作CF平分∠BCD交AD于点F(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,求证:△ABE≌△CDF.25、(10分)计算:﹣3+2.26、(12分)如图,在Rt△ABC中,∠C=90°,E是AB上的点,且AE=AC,DE⊥AB交BC于D,AC=6,BC=8,CD=1.(1)求DE的长;(2)求△ADB的面积.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】

由等腰直角三角形的性质可得AC=BC,CO=AO=BO,∠ACO=∠BCO=∠A=∠B=45°,CO⊥AO,由“ASA”可证△ADO≌△CEO,△CDO≌△BEO,由全等三角形的性质可依次判断.【详解】∵在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,∴AC=BC,CO=AO=BO,∠ACO=∠BCO=∠A=∠B=45°,CO⊥AO∵∠DOE=90°,∴∠COD+∠COE=90°,且∠AOD+∠COD=90°∴∠COE=∠AOD,且AO=CO,∠A=∠ACO=45°,∴△ADO≌△CEO(ASA)∴AD=CE,OD=OE,故④正确,同理可得:△CDO≌△BEO∴CD=BE,∴AC=AD+CD=AD+BE,故①正确,在Rt△CDE中,CD2+CE2=DE2,∴AD2+BE2=DE2,故②正确,∵△ADO≌△CEO,△CDO≌△BEO∴S△ADO=S△CEO,S△CDO=S△BEO,∴△ABC的面积等于四边形CDOE面积的2倍;故③正确,综上所述:正确的结论有①②③④,故选D.本题考查了全等三角形的判定和性质,勾股定理,等腰直角三角形的性质,熟练运用等腰直角三角形的性质是本题的关键.2、C【解析】

根据题意,等腰三角形的两腰长相等,即可列出关系式.【详解】依题意,,根据三角形的三边关系得,,得,,得,得,,故与的函数关系式及自变量的取值范围是:,故选.本题考查了一次函数的应用,涉及了等腰三角形的性质,三角形的三边关系,做此类题型要注意利用三角形的三边关系要确定边长的取值范围.3、D【解析】

根据根据矩形、菱形、正方形和平行四边形的判定方法对各选项进行判断.【详解】A.一组对边相等且平行的四边形是平行四边形,所以A选项错误。B.对角线相等的平行四边形是矩形,所以B选项错误;C.对角线互相垂直的平行四边形是菱形,所以C选项错误;D.对角线互相垂直平分且相等的四边形是正方形,所以D选项正确;故选D此题考查命题与定理,解题关键在于掌握各判定法则4、D【解析】

直接利用平行四边形的判定方法分别分析得出答案.【详解】解:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④两条对角线互相平分的四边形是平行四边形;故选:D.本题主要考查了平行四边形的判定,正确把握判定方法是解题关键.5、D【解析】

根据二次根式有意义,二次根式中的被开方数是非负数,分式要有意义分母不为零,进行分析即可.【详解】A.当a<0时,无意义,故此选项错误;B.当a>0或a<0时,无意义,故此选项错误;C.当a=0时,无意义,故此选项错误;D.a是任意实数,都有意义,故此选项正确;故选D.本题考查二次根式有意义的条件,需注意是a取任何值时二次根式都要有意义,若存在使二次根式无意义的a皆是错.6、B【解析】

根据坐标意义,点D坐标与垂线段有关,过点D向X轴垂线段DE,则OE、DE长即为点D坐标.【详解】过点D作DE⊥x轴,垂足为E,则∠CED=90°,∵四边形ABCD是菱形,∴AB//CD,∴∠DCE=∠ABC=45°,∴∠CDE=90°-∠DCE=45°=∠DCE,∴CE=DE,在Rt△CDE中,CD=2,CD2+DE2=CD2,∴CE=DE=,∴OE=OC+CE=2+,∴点D坐标为(2+,2),故选B.本题考查了坐标与图形性质、菱形的性质、等腰直角三角形的判定与性质,勾股定理等,正确添加辅助线是解题的关键.7、B【解析】试题解析:∵,∴ac<1.在方程中,△=≥﹣4ac>1,∴方程有两个不相等的实数根.故选B.8、B【解析】

根据分式定义:如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式进行分析即可.【详解】解:在,中,是分式,只有3个,

故选:B.本题考查了分式,关键是掌握分式的分母必须含有字母,而分子可以含字母,也可以不含字母.二、填空题(本大题共5个小题,每小题4分,共20分)9、或2【解析】

四边形ABCD为菱形,∠A=60,BD=3,得△ABD为边长为3等边三角形,分别讨论A,E在同侧和异侧的情况,在通过∠BED=120°算出即可【详解】画出示意图,分别讨论A,E在同侧和异侧的情况,∵四边形ABCD为菱形,∠A=60,BD=3,∴△ABD为边长为3等边三角形,则AO=,∵∠BED=120°,则∠OBE=30°,可得OE=,则AE=,同理可得OE’=,则AE’=,所以AE的长度为或本题考查菱形的性质、等腰三角形的性质等知识,解题的关键是正确画出图形,考虑问题要全面,属于中考常考题型.10、1【解析】

EF是△ABC的中位线,可得DE∥BC,又BD平分∠ABC交EF于D,则可证得等角,进一步可证得△BDE为等腰三角形,从而求出EB.【详解】解:∵EF是△ABC的中位线

∴EF∥BC,∠EDB=∠DBC

又∵BD平分∠ABC

∴∠EBD=∠DBC=∠EDB

∴EB=ED=1.

故答案为1.本题考查的是三角形中位线的性质和等腰三角形的性质,比较简单.11、38°【解析】

根据平行四边形对角相等即可求解.【详解】解:∵平行四边形ABCD中,∠A=38°,∴∠C=∠A=38°,故答案为:38°.本题考查了平行四边形的性质,要知道平行四边形对角相等.12、26cm【解析】

先根据平移的性质得DF=AC,AD=CF=3cm,再由△ABC的周长为20cm得到AB+BC+AC=20cm,然后利用等线段代换可计算出AB+BC+CF+DF+AD=26(cm),于是得到四边形ABFD的周长为26cm.【详解】∵△ABC沿BC方向平移3cm得到△DEF,∴DF=AC,AD=CF=3cm,∵△ABC的周长为20cm,即AB+BC+AC=20cm,∴AB+BC+CF+DF+AD=AB+BC+AC+AD+CF=20+3+3=26(cm),即四边形ABFD的周长为26cm.故答案是:26cm.考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.13、【解析】

根据二次根式有意义的条件即可求解.【详解】依题意得a+1≥0,解得故填:此题主要考查二次根式的定义,解题的关键是熟知被开方数为非负数.三、解答题(本大题共5个小题,共48分)14、(1)见解析;(2)53°;(3)【解析】

(1)根据两角对应相等的两个三角形相似即可判断.(2)只要证明△CPQ∽△APC,可得∠PQC=∠ACP即可解决问题.(3)连接AF.与Rt△ADF≌Rt△AQF(HL),推出DF=QF,设AD=AQ=BC=m,DF=FQ=x,FC=y,CQ=a,证明△BCQ∽△CFQ,可得,推出,即,由CF∥AB,可得,推出,可得,推出x2+xy-y2=0,解得x=y或(舍弃),由此即可解决问题.【详解】(1)证明:∵四边形ABCD是矩形,∴∠ABP=90°,∵BQ⊥AP,∴∠BQP=∠ABP=90°,∵∠BPQ=∠APB,∴△ABP∽△BQP.(2)解:∵△ABP∽△BQP,∴∴PB2=PQ•PA,∵PB=PC,∴PC2=PQ•PA,∴∵∠CPQ=∠APC,∴△CPQ∽△APC,∴∠PQC=∠ACP,∵∠BAC=37°,∴∠ACB=90°-37°=53°,∴∠CQP=53°.(3)解:连接AF.∵∠D=∠AQF=90°,AF=AF,AD=AQ,∴Rt△ADF≌Rt△AQF(HL),∴DF=QF,设AD=AQ=BC=m,DF=FQ=x,FC=y,CQ=a,∵∠BCF=∠CQB=∠CQF=90°,∴∠BCQ+∠FCQ=90°,∠CBQ=90°,∴∠FCQ=∠CBQ,∴△BCQ∽△CFQ,∴,∴∴,∵CF∥AB,∴,∴∴∴x2+xy-y2=0,∴x=y或(舍弃),∴∴.故答案为:.本题属于相似形综合题,考查了矩形的性质,相似三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.15、(1);(2);(3)P(6,3).【解析】试题分析:(1)利用待定系数法求直线的解析表达式;(2)由方程组得到C(2,﹣3),再利用x轴上点的坐标特征确定D点坐标,然后根据三角形面积公式求解;(3)由于△ADP与△ADC的面积相等,根据三角形面积公式得到点D与点C到AD的距离相等,则D点的纵坐标为3,对于函数,计算出函数值为3所对应的自变量的值即可得到D点坐标.试题解析:(1)设直线的解析表达式为,把A(4,0)、B(3,)代入得:,解得:,所以直线的解析表达式为;(2)解方程组:,得:,则C(2,﹣3);当y=0时,,解得x=1,则D(1,0),所以△ADC的面积=×(4﹣1)×3=;(3)因为点D与点C到AD的距离相等,所以D点的纵坐标为3,当y=3时,,解得x=6,所以D点坐标为(6,3).考点:两条直线相交或平行问题.16、(1)详见解析;(2)3;(3)①详见解析;②的长为【解析】

(1)以EF为边,作一个菱形,使其各边长都为;(2)如图2,连接HF,证明△DHG≌△BFE(AAS),可得CG=3;(3)①根据(2)中可知DG=BE=2,根据对角线垂直平分作内接菱形EFGH;②如图5,当F与C重合,则A与H重合时,此时BF的长最小,就是BC的长,根据直角三角形30度角的性质和勾股定理计算可得结论.【详解】(1)如图2所示,菱形即为所求;(2)如图3,连接,四边形是矩形,,,,,四边形是菱形,,,,,即,,;(3)①如图4所示,由(2)知:,,作法:作,连接,再作的垂直平分线,交、于、,得四边形即为所求作的内接菱形;②如图5,当与重合,则与重合时,此时的长最小,过作于,中,,,,,四边形是菱形,,,即当的长最短时,的长为本题是四边形的综合题,主要考查新定义−四边形ABCD的内接菱形,基本作图−线段的垂直平分线,菱形,熟练掌握基本作图及平行四边形、菱形和矩形的性质是解题的关键.17、(1)BP=CE,CE⊥AD;(2)结论仍然成立,理由见解析;(3)2【解析】

(1)由菱形ABCD和∠ABC=60°可证△ABC与△ACD是等边三角形,由等边△APE可得AP=AE,∠PAE=∠BAC=60°,减去公共角∠PAC得∠BAP=∠CAE,根据SAS可证得△BAP≌△CAE,故有BP=CE,∠ABP=∠ACE.由菱形对角线平分一组对角可证∠ABP=30°,故∠ACE=30°即CE平分∠ACD,由AC=CD等腰三角形三线合一可得CE⊥AD.(2)结论不变.证明过程同(1).(3)在Rt△AOP中,求出OA,OP即可解决问题.【详解】(1)BP=CE,CE⊥AD.理由:∵菱形ABCD中,∠ABC=60°∴AB=BC=CD=AD,∠ADC=∠ABC=60°∴△ABC、△ACD是等边三角形∴AB=AC,AC=CD,∠BAC=∠ACD=60°∵△APE是等边三角形∴AP=AE,∠PAE=60°∴∠BAC-∠PAC=∠PAE-∠PAC即∠BAP=∠CAE,∴△BAP≌△CAE(SAS)∴BP=CE,∠ABP=∠ACE∵BD平分∠ABC∴∠ACE=∠ABP=∠ABC=30°∴CE平分∠ACD∴CE⊥AD.故答案为BP=CE,CE⊥AD.(2)结论仍然成立.理由如下:如图,设CE交AD于H,连接AC.∵四边形ABCD是菱形,∠ABC=60°,∴△ABC,△ACD都是等边三角形,∠ABD=∠CBD=30°.∵△APE是等边三角形,∴AB=AC,AP=AE,∠BAC=∠PAE=60°.∴△BAP≌△CAE.∴BP=CE,∠ABP=∠ACE=30°.∵∠CAH=60°,∴∠CAH+∠ACH=90°.∴∠AHC=90°,即CE⊥AD.(3)如图,连接BE,由(2)可知CE⊥AD,BP=CE.在菱形ABCD中,AD∥BC,∴CE⊥BC.∵BC=AB=2,BE=2,在Rt△BCE中,CE==1.∴BP=CE=1.∵AC与BD是菱形的对角线,∴∠ABD=∠ABC=30°,AC⊥BD.∴OA=AB=,BO==3,∴OP=BP-BO=5,在Rt△AOP中,AP==2,本题考查了菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质,勾股定理.第(2)题的证明过程可由(1)适当转化而得,第(3)题则可直接运用(2)的结论解决问题.18、(1)甲的速度是10km/h,乙的速度是25km/h;(2),;(3)【解析】

(1)根据函数图象中的数据,由路程除以时间可求得甲乙的速度;

(2)根据a、b点的实际意义列出方程求解即可;

(3)由图象可知甲乙相距7.5km有两种情况,第二次相距7.5km时,汽车在自行车的前面,据此列出方程即可解答本题.【详解】(1)甲的速度为:25÷2.5=10km/h,乙的速度是25÷(2-1)=25÷1=25km/h;故答案为:10,25;(2)由题意得:25(a-1)=10a解得;由题意可知,当汽车到达B地时,两人相距bkm.∴b=25-10×2=5故答案为:,(3)甲、乙两人第二次相距7.5km是在甲乙相遇之后,汽车在自行车的前面,设甲出发xh,甲、乙两人第二次相距7.5km,由题意可得:25(x-1)-10x=7.5,解得:.答:甲出发后,甲乙两人第二次相距7.5km.本题考查一次函数的应用,解答本题的关键是明确题意,准确识别函数图像并利用方程思想解答.一、填空题(本大题共5个小题,每小题4分,共20分)19、7【解析】

根据勾股定理的几何意义可得正方形S的面积,继而根据正方形面积公式进行求解即可.【详解】根据勾股定理的几何意义,可知S=SE+SF=SA+SB+SC+SD=49cm2,所以正方形S的边长为=7cm,故答案为7.本题考查了勾股定理,熟悉勾股定理的几何意义是解题的关键.20、.【解析】

先对A化简,然后根据题意求出f(3)+f(4)+...+f(119)的值,然后求不等式的解集即可解答本题.【详解】解:A===f(3)=,…,f(119)=所以:f(3)+…+f(119)=+…+==解得:,故答案为.本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于中等题型.21、m>1【解析】试题分析:根据y=kx+b的图象经过x轴的正半轴则b>0即可求得m的取值范围.解:∵直线y=﹣2x+m﹣1的图象经过x轴的正半轴,∴m﹣1>0,解得:m>1,故答案为:m>1.22、0.8【解析】

根据题意分析可得△

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论