版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
SpatialschedulingforlargeassemblyblocksinshipbuildingAbstract:Thispaperaddressesthespatialschedulingproblem(SPP)forlargeassemblyblocks,whicharisesinashipyardassemblyshop。Thespatialschedulingproblemistoscheduleasetofjobs,ofwhicheachrequiresitsphysicalspaceinarestrictedspace。Thisproblemiscomplicatedbecauseboththeschedulingofassemblieswithdifferentduedatesandearlieststartingtimesandthespatialallocationofblockswithdifferentsizesandloadsmustbeconsideredsimultaneously。Thisproblemunderconsiderationaimstotheminimizationofboththemakespanandtheloadbalanceandincludesvariousreal-worldconstraints,whichincludesthepossibledirectionalrotationofblocks,theexistenceofsymmetricblocks,andtheassignmentofsomeblockstodesignatedworkplacesorworkteams.Theproblemisformulatedasamixedintegerprogramming(MIP)modelandsolvedbyacommerciallyavailablesolver.Atwo-stageheuristicalgorithmhasbeendevelopedtousedispatchingpriorityrulesandadiagonalfillspaceallocationmethod,whichisamodificationofbottom-left-fillspaceallocationmethod。ThecomparisonandcomputationalresultsshowstheproposedMIPmodelaccommodatesvariousconstraintsandtheproposedheuristicalgorithmsolvesthespatialschedulingproblemseffectivelyandefficiently。Keywords:Largeassemblyblock;Spatialscheduling;Loadbalancing;Makespan;Shipbuilding1.IntroductionShipbuildingisacomplexproductionprocesscharacterizedbyheavyandlargeparts,variousequipment,skilledprofessionals,prolongedleadtime,andheterogeneousresourcerequirements.Theshipbuildingprocessisdividedintosubprocessesintheshipyard,includingshipdesign,cuttingandbendingoperations,blockassembly,outfitting,painting,pre-erectionanderection。Theassemblyblocksarecalledtheminorassemblyblock,thesubassemblyblock,andthelargeassemblyblockaccordingtotheirsizeandprogressesinthecourseofassemblyprocesses。Thispaperfocusesonthespatialschedulingproblemoflargeassemblyblocksinassemblyshops。torecognizethattherearevariousspatialschedulingproblemsineveryaspectofshipbuildingduetothelimitedspace,facilities,equipment,laborandtime。TheSPPsoccurinvariousworkingareassuchascuttingandblastshops,assemblyshops,outfittingshops,pre—erectionyard,anddrydocks。TheSPPatdifferentareashasdifferentrequirementsandconstraintstocharacterizetheuniqueSPPs.Inaddition,thedepletionofenergyresourcesonlandputmoreemphasisontheoceandevelopment。Theshipbuildingindustriesfacethetransitionoffocusfromthetraditionalshipbuildingtooceanplantmanufacturing.Therefore,thediversityofassemblyblocks,materials,facilitiesandoperationsinshipyardsincreasesrapidly。TherearesomesolutionproviderssuchasSiemens™andDassultSystems™toprovideintegratedsoftwareincludingproductlifemanagement,enterpriseresourceplanningsystem,simulationandetc。Theyindicatedtheneedsofefficientalgorithmstosolvemedium-tolarge-sizedSPPproblemsin20
min,sothattheshopcanquicklyre-optimizetheproductionplanuponthefrequentandunexpectedchangesinshopfloorswiththeongoingoperationsonexitingblocksintact。Therearemanydifferentapplicationswhichrequireefficientschedulingalgorithmswithvariousconstraintsandcharacteristics(HYPERLINK”/science/article/pii/S0360835215002296"Kimetal。,2013,b9015"NguyenandYun,2014
and
HYPERLINK”/science/article/pii/S0360835215002296"\l”b9020"Yanetal.,2014)。However,thespatialschedulingproblemwhichconsidersspatiallayoutanddynamicjobschedulinghasnotbeenstudiedextensively.Untilnow,spatialschedulinghastobecarriedoutbyhumanschedulersonlywiththeirexperiencesandhistoricaldata。Evenwhenhumanexpertshavemuchexperienceinspatialscheduling,ittakesalongtimeandintensiveefforttoproduceasatisfactoryschedule,duetothecomplexityofconsideringblocks’geometricshapes,loads,requiredfacilities,etc。Inpractice,spatialschedulingformorethanasix—monthperiodisbeyondthehumanschedulers’capacity.Moreover,thespaceintheworkingareastendstobethemostcriticalresourceinshipbuilding。Therefore,theeffectivemanagementofspatialresourcesthroughautomationofthespatialschedulingprocessisacriticalissueintheimprovementofproductivityinshipbuildingplants.Ashipyardassemblyshopisconsistedofpinnedworkplaces,equipment,andoverhangcranes。Duetotheheavyweightoflargeassemblyblock,overhangcranesareusedtoaccessanyareasoverotherobjectswithoutanyhindranceintheassemblyshop。Theheightofcranescanlimittheheightofblocksthatcanbeassembledintheshop。Theshopcanbeconsideredasatwo—dimensionalspace。Theblocksareplacedonpreciselypinnedworkplaces。Oncetheblockisallocatedtoacertainareainaworkplace,itisdesirablenottomovetheblockagaintodifferentlocationsduetothesizeandweightofthelargeassemblyblocks.Therefore,itisimportanttoallocatetheworkspacetoeachblockcarefully,sothattheworkspaceinanassemblyshopcanbeutilizedinamostefficientway。Inaddition,sinceeachblockhasitsduedatewhichispre—determinedatthestageofshipdesign,thetardinessofablockassemblycanleadtoseveredelayinthefollowingoperations。Therefore,inthespatialschedulingproblemforlargeassemblyblocks,theschedulingofassemblyprocessesforblocksandtheallocationofblockstospecificlocationsinworkplacesmustbeconsideredatthesametime.Astheterminologysuggests,spatialschedulingpursuestheoptimalspatiallayoutandthedynamicschedulewhichcanalsosatisfytraditionalschedulingconstraintssimultaneously。Inaddition,therearemanyconstraintsorrequirementswhichareseriousconcernsonshopfloorsandthesecomplicatetheSPP。Theconstraintsorrequirementsthisstudyconsideredareexplainedhere:(1)Blockscanbeputineitherdirections,horizontalorvertical。(2)Sincetheshipissymmetricaroundthecenterline,thereexistsymmetricblocks.Thesesymmetricblocksarerequiredtobeputnexttoeachotheronthesameworkplace。(3)Someblocksarerequiredtobeputonacertainspecialareaoftheworkplace,becausetheworkteamsonthatareahasspecialequipmentorskillstoachieveacertainlevelofqualityorcompletethenecessarytasks。(4)Frequently,theproductionplanmaynotbeimplementedasplanned,sothatfrequentmodificationsinproductionplansarerequiredtocopewiththechangesintheshop。Atthesemodifications,itisrequiredtoproduceanewmodifiedproductionplanwhichdoesnotremoveormovethepre—existingblocksintheworkplacetocompletetheongoingoperations.(5)Ifpossibleatanytime,theloadbalancingovertheworkteams,i。e.,workplacesaredesirableinordertokeepalltaskassignmentstoworkteamsfairanduniform。Lee,Lee,andChoi(1996)studiedaspatialschedulingthatconsidersnotonlytraditionalschedulingconstraintslikeresourcecapacityandduedates,butalsodynamicspatiallayoutoftheobjects.Theyusedtwo—dimensionalarrangementalgorithmdevelopedbyHYPERLINK”http:///science/article/pii/S0360835215002296”Lozano-Perez(1983)todeterminethespatiallayoutofblocksinshipbuilding。HYPERLINK”/science/article/pii/S0360835215002296”Koh,Eom,andJang(2008)extendedtheirpreciousworks(Kohetal。,1999)byproposingthelargestcontactareapolicytoselectabetterallocationofblocks。\l”b0015”Cho,Chung,Park,Park,andKim(2001)proposedaspatialschedulingsystemforblockpaintingprocessinshipbuilding,includingblockscheduling,fourarrangementalgorithmsandblockassignmentalgorithm。Parketal.(2002)extendedShin,Kwon,andRyu(2008)proposedabottom—left-fillheuristicmethodforspatialplanningofblockassembliesandsuggestedaplacementalgorithmforblocksbydifferentialevolutionarrangementalgorithm.b0050”Liu,Chua,andWee(2011)proposedasimulationmodelwhichenabledmultiplepriorityrulestobecompared。HYPERLINK”http:///science/article/pii/S0360835215002296"\l”b0080”Zheng,Jiang,andChen(2012)proposedamathematicalprogrammingmodelforspatialschedulingandusedseveralheuristicspatialschedulingstrategies(gridsearchingandgeneticalgorithm)。b0075”ZhangandChen(2012)proposedanothermathematicalprogrammingmodelandproposedtheagglomerationalgorithm.Thisstudypresentsanovelmixedintegerprogramming(MIP)formulationtoconsiderblockrotations,symmetricalblocks,pre-existingblocks,loadbalancingandallocationofcertainblockstopre—determinedworkspace.TheproposedMIPmodelswereimplementedbycommerciallyavailablesoftware,LINGO®andproblemsofvarioussizesaretested.ThecomputationalresultsshowthattheMIPmodelisextremelydifficulttosolveasthesizeofproblemsgrows。Toefficientlysolvetheproblem,atwo—stageheuristicalgorithmhasbeenproposed。Section2describesspatialschedulingproblemsandassumptionswhichareusedinthisstudy。Section3presentsamixedintegerprogrammingformulation.InSections0035"5。TheconclusionsaregiveninSections0040”6。2.ProblemdescriptionsTheshipdesigndecideshowtodividetheshipintomanysmallerpieces.Themetalsheetsarecut,blast,bendandweldtobuildsmallblocks。Thesesmallblocksareassembledtobiggerassemblyblocks.Duringthisshipbuildingprocess,allblockshavetheirearlieststartingtimeswhicharedeterminedfromthepreviousoperationalstepandduedateswhicharerequiredbythenextoperationalstep.Ateachstep,theblockshavetheirownshapesofvarioussizesandhandlingrequirements.Duringtheassembly,noblockcanoverlapphysicallywithothersoroverhangtheboundaryofworkplace.Thespatialschedulingproblemcanbedefinedasaproblemtodeterminetheoptimalscheduleofagivensetofblocksandthelayoutofworkplacesbydesignatingtheblocks’workplacesimultaneously。Asthetermimplies,spatialschedulingpursuestheoptimaldynamicspatiallayoutschedulewhichcanalsosatisfytraditionalschedulingconstraints.Dynamicspatiallayoutschedulecanbeincludingthespatialallocationissue,temporalallocationissueandresourceallocationissue.AnexampleofspatialschedulingisgiveninHYPERLINK”/science/article/pii/S0360835215002296"\l”f0010”Fig.2。Thereare4blockstobeallocatedandscheduledinarectangularworkplace。Eachblockisshadedindifferentpatterns。HYPERLINK”http:///science/article/pii/S0360835215002296”\l”f0010"Fig。2showsthe6—dayspatialscheduleoffourlargeblocksonagivenworkplace。Blocks1and2arepre—existedorallocatedatday1.Theearlieststartingtimesofblocks3and4aredays2and4,respectively.Theprocessingtimesofblocks1,2and3are4,2and4
days,respectively。Thespatialschedulemustsatisfythetimeandspaceconstraintsatthesametime.Therearemanyobjectivesinspatialscheduling,includingtheminimizationofmakespan,theminimumtardiness,themaximumutilizationofspatialandnon-spatialresourcesandetc.Theobjectiveinthisstudyistominimizethemakespanandbalancetheworkloadovertheworkspaces。Therearemanyconstraintsforspatialschedulingproblemsinshipbuilding,dependingonthetypesofshipsbuilt,theoperationalstrategiesoftheshop,organizationalrestrictionsandetc.Somebasicconstraintsaregivenasfollows;(1)allblocksmustbeallocatedongivenworkplacesforassemblyprocessesandmustnotoversteptheboundaryoftheworkplace;(2)anyblockcannotoverlapwithotherblocks;(3)allblockshavetheirownearlieststartingtimeandduedates;(4)symmetricalblocksneedstobeplacedside-by—sideinthesameworkspace.\l”f0015"Fig。3showshowsymmetricalblocksneedtobeassigned;(5)someblocksneedtobeplacedinthedesignatedworkspace;(6)therecanbeexistingblocksbeforetheplanninghorizon;(7)workloadsforworkplacesneedstobebalancedasmuchaspossible。Inadditiontotheconstraintsdescribedabove,thefollowingassumptionsaremade。(1)Theshapeofblocksandworkplacesisrectangular。(2)Onceablockisplacedinaworkplace,itcannotbemovedorremovedfromitslocationuntiltheprocessiscompleted.(3)Blockscanberotatedatanglesof0°and90°(see\l”f0020"Fig.4)。(4)Thesymmetricblockshavethesamesizes,arerotatedatthesameangleandshouldbeplacedside-by-sideonthesameworkplace。(5)Thenon—spatialresources(suchaspersonnelorequipment)areadequate。3。AmixedintegerprogrammingmodelAMIPmodelisformulatedandgiveninthissection.Theobjectivefunctionistominimizemakespanandthesumofdeviationfromaverageworkloadperworkplace,consideringtheblockrotation,thesymmetricalblocks,pre—existingblocks,loadbalancingandtheallocationofcertainblockstopre—determinedworkspace。AworkspacewiththelengthLENWandthewidthWIDWisconsideredtwo-dimensionalrectangularspace.Sincetherectangularshapesfortheblockshavebeenassumed,ablockcanbeplacedonworkspacebydetermining(x,y)coordinates,where0
⩽
x
⩽
LENWand0
⩽
y
⩽
WIDW。Hence,thedynamiclayoutofblocksonworkplacesissimilartotwo-dimensionalbinpackingproblem。Inadditiontotheblockallocation,theoptimalscheduleneedstobeconsideredatthesametimeinspatialschedulingproblems。Zaxisisintroducedtodescribethetimedimension.Then,spatialschedulingproblembecomesathree—dimensionalbinpackingproblemwithvariousobjectivesandconstraints。Thedecisionvariablesofspatialschedulingproblemare(x,y,z)coordinatesofallblockswithinathree—dimensionalspacewhosesizesareLENW,WIDWandTinx,yandzaxes,whereTrepresentstheplanninghorizon.Thisspaceisillustratedinf0025”Fig。5。Inf0030”Fig。6,thespatialschedulingoftwoblocksintoaworkplaceisillustratedasanexample。Theparametersp1andp2indicatetheprocessingtimesforBlocks1and2,respectively.Asshowninzaxis,Block2isscheduledafterBlock1iscompleted。4。Atwo-stageheuristicalgorithmThecomputationalexperimentsfortheMIPmodelinSection\l”s0015”3havebeenconductedusingacommerciallyavailablesolver,LINGO®.Obtainingglobaloptimumsolutionsisverytimeconsuming,consideringthenumberofvariablesandconstraints。Ashipisconsistedofmorethan8hundredlargeblocksandthesizeofproblemusingMIPmodelisbeyondtoday’scomputationalability.Atwo-stageheuristicalgorithmhasbeenproposedusingthedispatchingpriorityrulesandadiagonalfillmethod。4.1。Stage1:LoadbalancingandsequencingPastresearchonspatialschedulingproblemsconsidersvariouspriorityrules。\l”b0045”Leeetal.(1996)usedapriorityrulefortheminimumslacktimeofblocks.HYPERLINK”/science/article/pii/S0360835215002296"\l”b0015”Choetal.(2001)andParketal.(2002)usedtheearliestduedate.HYPERLINK”/science/article/pii/S0360835215002296”Fig。7.Thefirststepofthealgorithminthisstageistogrouptheblocksbasedontheurgencypriority.Theurgencypriorityiscalculatedbysubtractingtheearlieststartingtimeandtheprocessingtimefromtheduedateforeachblock。Thesmallertheurgencypriority,themoreurgenttheblockneedstobedscheduled。Thenallblocksaregroupedintoanappropriatenumberofgroupsforareasonablenumberoflevelsinurgencypriorities.Letgbethisdiscretionarynumberofgroups。Thereareggroupsofblocksbasedontheurgencyofblocks.Thenumberofblocksineachgroupdoesnotneedtobeidentical.Blocksineachgrouparere—orderedgroupedintoasmanysubgroupsasworkplaces,consideringtheworkloadofblockssuchastheweightorweldinglength。Theblocksineachsubgrouphavethesimilarurgencyandworkloads。Then,theseblocksineachsubgroupareorderedinanascendingorderoftheearlieststartingtime.Thisorderingwillbeusedtoblockallocationsinsequence。Thesubgroupcorrespondstotheworkplace。Ifblockimustbeprocessedatworkplacewandiscurrentlyallocatedtootherworkplaceorsubgroupthanw,blockiisswappedwithablockatthesamepositionofblockiinanascendingorderoftheearlieststartingtimeatitsworkplace(orsubgroup)。Sincethesymmetricblocksmustbelocatedonasameworkplace,asimilarswappingmethodcanbeused。Oneofsymmetricblockswhichareallocatedintodifferentworkplace(orsubgroups)needstobeselectedfirst。Inthisstudy,weselectedoneofsymmetricblockswhicheverhasshownupearlierinanascendingorderoftheearlieststartingtimeattheircorrespondingworkplace(orsubgroup).Then,theselectedblockisswappedwithablockatthesamepositionofsymmetricblocksinanascendingorderoftheearlieststartingtimeatitsworkplace(orsubgroups).4。2。Stage2:SpatialallocationOncetheblocksinaworkplace(orsubgroup)aresequentiallyorderedindifferenturgencyprioritygroups,eachblockcanbeassignedtoworkplacesonebyone,andallocatedtoaspecificlocationonaworkplace。Therehasbeenpreviousresearchonheuristicplacementmethods.Thebottom—left(BL)placementmethodwasproposedbyHYPERLINK”http:///science/article/pii/S0360835215002296"\l”b0005”Baker,Coffman,andRivest(1980)andplacesrectanglessequentiallyinabottom—leftmostposition。HYPERLINK”http:///science/article/pii/S0360835215002296”\l”b0030”Jakobs(1996)usedabottom—leftmethodthatiscombinedwithahybridgeneticalgorithm(see\l”f0040”Fig。8).HYPERLINK”http:///science/article/pii/S0360835215002296"\l”b0055”LiuandTeng(1999)developedanextendedbottom-leftheuristicwhichgivesprioritytodownwardmovement,wheretherectanglesisonlyslideleftwardsifnodownwardmovementispossible.b0010"Chazele(1983)proposedthebottom-left—fill(BLF)method,whichsearchesforlowestbottom-leftpoint,holesatthelowestbottom-leftpointandthenplacetherectanglesequentiallyinthatbottom—leftposition.Iftherectangleisnotoverlapped,therectangleisplacedandthepointlistisupdatedtoindicatenewplacementpositions.Iftherectangleisoverlapped,thenextpointinthepointlistisselecteduntiltherectanglecanbeplacedwithoutanyoverlap.HYPERLINK”/science/article/pii/S0360835215002296"\l”b0025”HopperandTurton(2000)madeacomparisonbetweentheBLandBLFmethods。TheyconcludedthattheBLFmethodalgorithmachievesbetterassignmentpatternsthantheBLmethodforHopper’sexampleproblems.Spatialallocationinshipbuildingisdifferentfromtwo-dimensionalpackingproblem.Blockshaveirregularpolygonalshapesinthespatialallocationandblockscontinuouslyappearanddisappearsincetheyhavetheirprocessingtimes。ThisfrequentplacementandremovalofblocksmakesBLFmethodlesseffectiveinspatialallocationoflargeassemblyblock。Inordertosolvethesedrawbacks,wehavemodifiedtheBLFmethodappropriatetospatialschedulingforlargeassemblyblocks.Inaworkplace,sincetheblocksareplacedandremovedcontinuously,itismoreefficienttoconsiderboththebottom—leftandtop—rightpointsofplacedblocksinsteadofbottom-leftpointsonly.Wedenoteitasdiagonalfillplacement(seeHYPERLINK”/science/article/pii/S0360835215002296”Fig。9)。Sincethenumberofpotentialplacementconsiderationsincreases,ittakesabitmoretimetoimplementdiagonalfillbutthecomputationalresultsshowsthatitisnegligible.ThediagonalfillmethodshowsbetterperformancesthantheBLFmethodinspatialschedulingproblems.WhentheBLFmethodisusedinspatialallocation,thealgorithmmakestheallocationofsomeblocksdelayeduntiltheinterferencebypre—positionedblocksareremoved.Itgeneratesalesseffectiveandlessefficientspatialschedule.Theproposeddiagonalfillplacementmethodresolvethisdelaysbetterbyallocatingtheblocksassoonaspossibleinagreedyway,asshowninHYPERLINK”http:///science/article/pii/S0360835215002296"Fig。10。Thepotentialdrawbacksfromthegreedyapproachesisresolvedbyanotherplacementstrategytominimizethepossibledeadspaces,whichwillbeexplainedinthefollowingparagraphs。TheBLFmethodonlyfocusedontwo-dimensionalbinpacking.Frequentremovalandplacementofblocksinaworkspacemayleadtoaccumulationofdeadspaces,whicharesmallandunusablespacesamongblocks.Aminimalpossible—deadspacestrategyhasbeenusedalongwiththeBLFmethod.Possible—deadspacesarebeinggeneratedoverthespatialschedulingandtheyhavelesschancetobeallocatedforfutureblocks。Theminimalpossible—deadspacestrategyminimizesthepotentialdeadspaceafterallocatingthefollowingblocks(HYPERLINK”/science/article/pii/S0360835215002296”\l”b0020”Chung,2001
and
Kohetal。,2008)byconsideringthe0°and90°rotationoftheblockandallocatingthefollowingblockforminimalpossible-deadspace.Fig.11。Consideringtherotationoftheschedulingblocksandtheplacementconsiderationpointsfromthediagonalfillplacementmethods,theschedulingblockswillbefinallyallocated。Inthistwo—stagealgorithm,blockstendtobeplacedadjacenttooneofthealternativeedgesandtheirassignmentsaredonepreferentiallytominimizefracturedspaces。5.ComputationalresultsTodemonstratetheeffectivenessandefficiencyoftheproposedMIPformulationandheuristicalgorithm,theactualdataabout800+largeassemblyblocksfromoneofmajorshipbuildingcompanieshasbeenobtainedandused。Alltestproblemsaregeneratedfromthisreal-worlddata.AllcomputationalexperimentshavebeencarriedoutonapersonalcomputerwithaIntel®Core™i3—2100CPU@3。10
GHzwith2
GBRAM.TheMIPmodelinSection\l”s0015”3hasbeenprogrammedandsolvedusingLINGO®version10。0,acommerciallyavailablesoftwarewhichcansolvelinearandnonlinearmodels.Theproposedtwo—stageheuristicalgorithmhasbeenprogrammedinJAVAprogramminglanguage。Becauseourcomputationaleffortstoobtaintheoptimalsolutionsforevensmallproblemsaremorethansignificant,thecomplexityofSPPcanberecognizedasoneofmostdifficultandtimeconsumingproblems.DependingonthescalingfactorαinobjectivefunctionoftheproposedMIPformulation,theperformanceoftheMIPmodelvariessignificantly.Settingαlessthan0.01makestheloadbalancingcapabilitytobeignoredfromtheoptimalsolutionintheMIPmodel。Forcomputationalexperimentsinthisstudy,theresultswiththescalingfactorsetto0。01isshownanddiscussed。Thevalueneedstobefine-turnedtoobtainthedesirableoutcomes。HYPERLINK”/science/article/pii/S0360835215002296"\l”t0005"Table1showsacomparisonofcomputationalresultsandperformancebetweentheMIPmodelsandtwo-stageheuristicalgorithm。AsshowninTable1,theproposedtwo—stageheuristicalgorithmfindsthenear-optimalsolutionsformediumandlargeproblemsveryquicklywhiletheoptimalMIPmodelswasnotabletosolvetheproblemsofmediumorlargesizesduetothememoryshortageoncomputers。ItisobservedthatthecomputationaltimesfortheMIPproblemsarerapidlygrowingastheproblemsizesincreases.ThetestproblemsinHYPERLINK”http:///science/article/pii/S0360835215002296”a38255。00030。7400。21850––53.7600.719100––133.7802。948200––328。86012。523300––416.06040.154400––532。36073.214Bestfeasiblesolutionafter10
hinGlobalSolverofLINGO®.\o"Full—sizetable—Opensnewwindow"Full-sizetableHYPERLINK”/science/article/pii/S0360835215002296”Tableoptions\l”t0005"\o"Viewinworkspace”ViewinworkspaceHYPERLINK”/science/article/pii/S0360835215002296"\o”DownloadasCSV”DownloadasCSVTheoptimalsolutionsfortestproblemswithmorethan50blocksinHYPERLINK”/science/article/pii/S0360835215002296”\l”t0005"Table1havebeennotobtainedevenafter24
h.Thebestknownfeasiblesolutionsafter10
hforthetestproblemswith20blocksand30blocksarereportedinHYPERLINK”http:///science/article/pii/S0360835215002296”\l”t0005"Table1.ItisobservedthattheLINGO®doesnotsolvethenonlinearconstraintsverywellasshowninHYPERLINK”http:///science/article/pii/S0360835215002296"\l”t0005”Table1。Forverysmallproblemwith10blocks,theLINGO®wasabletoachievetheoptimalsolutions。Forslightlybiggerproblems,theLINGO®tooksignificantlymoretimetofindfeasiblesolutions.Fromthisobservation,theapproachestoobtainthelowerboundthroughtherelaxationmethodandupperboundsaresignificantrequiredinfutureresearch.Incontrary,theproposedtwo—stageheuristicalgorithmwasabletofindthegoodsolutionsveryquickly。Forthesmallesttestproblemwith10blocks,itwasabletofindtheoptimalsolutionaswell.Thecomputationaltimesare1014and0.026s,respectively,fortheMIPapproachandtheproposedalgorithm.Interestingly,theproposedheuristicalgorithmfoundsignificantlybettersolutionsinonly0。078and0。218
s,respectively,forthetestproblemswith20and30blocks。Forthesetwoproblems,theLINGO®generatestheworsesolutionsthantheheuristicsafter10
hofcomputationaltimes。Thesymbol‘–’inHYPERLINK”/science/article/pii/S0360835215002296"\l”f0060”Fig.12showspartialsolutionsoftestproblemswith20and30blockson2workplaces.ThepurposeofHYPERLINK”/science/article/pii/S0360835215002296”Fig.12istoshowtheprogressofproductionplanninggeneratedbythetwo—stageheuristicalgorithm。Twoworkplacesareindifferentsizesof(40,30)and(35,40),respectively.6。ConclusionsAsglobalwarmingisexpectedtoopenanewwaytotransportamongcontinentthroughNorthPoleSeaandtoexpeditetheoceansmoreaggressively,theneedsformoreshipsandoceanplantsareforthcoming。Theshipbuildingindustriescurrentlyfaceincreaseddiversityofassemblyblocksinlimitedproductionshipyard.Spatialschedulingforlargeassemblyblocksholdsthekeyroleinsuccessfuloperationsoftheshipbuildingcompanies.Thetaskofspatialschedulingtakesplaceatalmosteverystageofshipbuildingprocessesandthelargeassemblyshopisoneofthemostcongestedoperationalareasintoday'sshipbuilding。Itisalsoknownthatthespatialschedulingproblemhasbeenthemajorsourceofthebottleneck。Thepractitionersinshipbuildingindustriesrequirestheir
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基于AI的茶叶品质检测设备采购合同(04版)
- 转让房合同范本
- 协商解除劳动合同协议书范本格式
- 有关厂房的房屋租赁合同范文
- 农业厅无害产品认证监管方案(3篇)
- 政府采购格式合同范本货物类样例
- 脚手架设计与安全评估服务合同2024年度
- 2024年度航空零部件制造与维修合同2篇
- 新生儿贫血及护理
- 2024年度技术研发合同:科研机构与企业之间的技术研发协议
- 小学2024年秋季学生1530安全教育记录表(全学期)
- 期中检测试卷(试题)共3套 -2024-2025学年教科版四年级科学上册
- 2024-2030年版中国航运金融业市场发展模式及投资规划分析报告
- 《桥梁施工技术》试卷A及答案
- 2024年江苏公务员考试申论试题(A卷)
- 中国AI+营销行业深度分析、投资前景、趋势预测报告(智研咨询)
- 注册的安全工程师考试题库
- 第5课-动荡变化中的春秋时期【课件】5
- 医院火灾应急预案
- 道 法+在劳动中创造人生价值 课件-2024-2025学年统编版道德与法治七年级上册
- 实验室安全教育课件
评论
0/150
提交评论