




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一、选择题1.小明去文具店购买了笔和本子共5件,已知两种文具的单价均为正整数且本子的单价比笔的单价贵.在付账时,小明问是不是27元,但收银员却说一共48元,小明仔细看了看后发现自己将两种商品的单价记反了.小明实际的购买情况是()A.1支笔,4本本子 B.2支笔,3本本子C.3支笔,2本本子 D.4支笔,1本本子2.新运算“△”定义为(a,b)△(c,d)=(ac+bd,ad+bc),如果对于任意数a,b都有(a,b)△(x,y)=(a,b),则(x,y)=()A.(0,1) B.(0,﹣1) C.(﹣1,0) D.(1,0)3.下列方程组中,是二元一次方程组的是()A. B. C. D.4.已知方程组,若,的值相等,则()A. B. C.2 D.5.小王沿街匀速行走,发现每隔12分钟从背后驶过一辆8路公交车,每隔4分钟从迎面驶来一辆8路公交车.假设每辆8路公交车行驶速度相同,而且8路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是()A.3分钟 B.4分钟 C.5分钟 D.6分钟6.已知关于,的方程组给出下列结论:①是方程组的解;②无论取何值,,的值都不可能互为相反数;③当时,方程组的解也是方程的解;④,的都为自然数的解有对.其中正确的是()A.②③ B.③④ C.①② D.①②③④7.在解方程组时,小明由于粗心把系数抄错了,得到的解是.小亮把常数抄错了,得到的解是,则原方程组的正确解是()A. B. C. D.8.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架,其中《磁不足》卷记载了一道有趣的数学问题:“今有共买物,人出八,赢三;人出七,不足四,问人数、物价各几何?”译文:“今有人合伙购物,每人出8钱,会多出3钱;每人出7钱,又差4钱,问人数,物价各多少?”设人数为x人,物价为y钱,根据题意,下面所列方程组正确的是()A. B. C. D.9.已知是二元一次方程组的解,则的值为()A.-2 B.2 C.-4 D.410.关于x,y的,二元一次方程,当a取一个确定的值时就得到一个方程,所有这些方程有一个公共解,则这个公共解是()A. B. C. D.二、填空题11.某食品公司为迎接端午节,特别推出三种新品粽子,分别是鲍鱼粽、水果粽、香芋粽,并包装成甲、乙两种盒装礼盒.每盒礼盒的总成本是盒中鲍鱼粽、水果粽、香芋粽三种粽子的成本之和(盒子成本忽略不计).甲礼盒每盒装有个鲍鱼粽、个水果粽和个香芋粽;乙礼盒每盒装有个鲍鱼粽、个水果粽和个香芋粽.每盒甲礼盒的成本正好是个鲍鱼粽成本的倍,而每盒甲礼盒的售价是在甲礼盒成本的基础上增加了.每盒乙礼盒的利润率为.当该公司销售这两种盒装礼盒的总利润为,且销售甲礼盒的总利润是元时,这两种礼盒的总销售额是________元.12.三位先生A、B、C带着他们的妻子a、b、c到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A比b多买9件商品,先生B比a多买7件商品.则先生A的妻子是__________.13.如图,在大长方形中,放入六个相同的小长方形,,,则图中阴影部分面积是____.14.历代数学家称《九章算术》为“算经之首”.书中有这样一道题的记载,译文为:今有5只雀、6只燕,分别聚集在一起称重,称得雀重,燕轻.若将一只雀、一只燕交换位置,则重量相等;将5只雀、6只燕放在一起称量,则总重量为1斤.问雀、燕每1只各重多少斤?若设雀每只重斤,燕每只重斤,则可列方程组为________________15.两位同学在解方程组时,甲同学正确地解出,乙同学因把c写错而解得,则a=_____,b=_____,c=_____.16.若方程组的解是,则方程组的解是______.17.问题解决:糖葫芦一般是用竹签串上山楂.再蘸以冰糖制作而成,现将一些山楂分别串在若干个竹签上,如果每根竹签串4个山楂,还剩余3个山楂;如果每根竹签串7个山楂,还剩余6根竹签,求竹签有多少根?山楂有多少个?反思归纳:现有m根竹签,n个山楂,若每根竹签串a个山楂,还剩b个山楂,则m、n、a、b满足的等量关系为(用含m、n、a、b的代数式表示).18.某年级有学生367人,其中男生比女生人数的2倍少20人,问男女学生各多少人?设女生人数为x人,男生人数为y人,可列方程组为__________________.19.已知x=4,y=1和x=2,y=﹣1都是方程mx+ny=6的解,则m+n的值为___.20.某中学七年级在数学竞赛活动中举行了“一题多解”比赛,按分数高低取前50名获奖,原定一等奖5人,二等奖10人,三等奖35人,现调整为一等奖10人,二等奖15人,三等奖25人,调整后一等奖平均分降低5分,二等奖平均分降低3分,三等奖平均分降低1分,如果原来一等奖比二等奖平均分数多2分,则调整后二等奖比三等奖平均分数多______分.三、解答题21.如图,平面直角坐标系中,已知点A(a,0),B(0,b),其中a,b满足.将点B向右平移24个单位长度得到点C.点D,E分别为线段BC,OA上一动点,点D从点C以2个单位长度/秒的速度向点B运动,同时点E从点O以3个单位长度/秒的速度向点A运动,在D,E运动的过程中,DE交四边形BOAC的对角线OC于点F.设运动的时间为t秒(0<t<10),四边形BOED的面积记为S四边形BOED(以下面积的表示方式相同).(1)求点A和点C的坐标;(2)若S四边形BOED≥S四边形ACDE,求t的取值范围;(3)求证:在D,E运动的过程中,S△OEF>S△DCF总成立.22.在平面直角坐标系中,若点P(x,y)的坐标满足x﹣2y+3=0,则我们称点P为“健康点”:若点Q(x,y)的坐标满足x+y﹣6=0,则我们称点Q为“快乐点”.(1)若点A既是“健康点”又是“快乐点”,则点A的坐标为;(2)在(1)的条件下,若B是x轴上的“健康点”,C是y轴上的“快乐点”,求△ABC的面积;(3)在(2)的条件下,若P为x轴上一点,且△BPC与△ABC面积相等,直接写出点P的坐标.23.我市某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A型与B型两种板材.如图甲,(单位:)(1)列出方程(组),求出图甲中a与b的值;(2)在试生产阶段,若将30张标准板材用裁法一裁剪,4张标准板材用裁法二裁剪,再将得到的A型与B型板材做侧面和底面,做成图乙的竖式与横式两种礼品盒.①两种裁法共产生A型板材________张,B型板材_______张;②已知①中的A型板材和B型板材恰好做成竖式有盖礼品盒x个,横式无盖礼品盒的y个,求x、y的值.24.七年(1)(2)两班各40人参加垃圾分类知识竞赛,规则如图.比赛中,所有同学均按要求一对一连线,无多连、少连.(1)分数5,10,15,20中,每人得分不可能是________分.(2)七年(1)班有4人全错,其余成员中,满分人数是未满分人数的2倍;七年(2)班所有人都得分,最低分人数的2倍与其他未满分人数之和等于满分人数.①问(1)班有多少人得满分?②若(1)班除0分外,最低得分人数与其他未满分人数相等,问哪个班的总分高?25.如图①,在平面直角坐标系中,点A在x轴上,直线OC上所有的点坐标,都是二元一次方程的解,直线AC上所有的点坐标,都是二元一次方程的解,过C作x轴的平行线,交y轴与点B.(1)求点A、B、C的坐标;(2)如图②,点M、N分别为线段BC,OA上的两个动点,点M从点C以每秒1个单位长度的速度向左运动,同时点N从点O以每秒1.5个单位长度的速度向右运动,设运动时间为t秒,且0<t<4,试比较四边形MNAC的面积与四边形MNOB的面积的大小.26.阅读下面资料:小明遇到这样一个问题:如图1,对面积为a的△ABC逐次进行以下操作:分别延长AB、BC、CA至A1、B1、C1,使得A1B2AB,B1C2BC,C1A2CA,顺次连接A1、B1、C1,得到△A1B1C1,记其面积为S1,求S1的值.小明是这样思考和解决这个问题的:如图2,连接A1C、B1A、C1B,因为A1B2AB,B1C2BC,C1A2CA,根据等高两三角形的面积比等于底之比,所以2S△ABC2a,由此继续推理,从而解决了这个问题.(1)直接写出S1(用含字母a的式子表示).请参考小明同学思考问题的方法,解决下列问题:(2)如图3,P为△ABC内一点,连接AP、BP、CP并延长分别交边BC、AC、AB于点D、E、F,则把△ABC分成六个小三角形,其中四个小三角形面积已在图上标明,求△ABC的面积.(3)如图4,若点P为△ABC的边AB上的中线CF的中点,求S△APE与S△BPF的比值.27.如图,已知,,且满足.(1)求、两点的坐标;(2)点在线段上,、满足,点在轴负半轴上,连交轴的负半轴于点,且,求点的坐标;(3)平移直线,交轴正半轴于,交轴于,为直线上第三象限内的点,过作轴于,若,且,求点的坐标.28.历史上的数学巨人欧拉最先把关于x的多项式用记号f(x)来表示.例如f(x)=x2+3x-5,把x=某数时多项式的值用f(某数)来表示.例如x=-1时多项式x2+3x-5的值记为f(-1)=(-1)2+3×(-1)-5=-7.(1)已知g(x)=-2x2-3x+1,分别求出g(-1)和g(-2);(2)已知h(x)=ax3+2x2-ax-6,当h()=a,求a的值;(3)已知f(x)=--2(a,b为常数),当k无论为何值,总有f(1)=0,求a,b的值.29.某生态柑橘园现有柑橘21吨,计划租用A,B两种型号的货车将柑橘运往外地销售.已知满载时,用2辆A型车和3辆B型车一次可运柑橘12吨;用3辆A型车和4辆B型车一次可运柑橘17吨.(1)1辆A型车和1辆B型车满载时一次分别运柑橘多少吨?(2)若计划租用A型货车m辆,B型货车n辆,一次运完全部柑橘,且每辆车均为满载.①请帮柑橘园设计租车方案;②若A型车每辆需租金120元/次,B型车每辆需租金100元/次.请选出最省钱的租车方案,并求出最少租车费.30.规定:二元一次方程有无数组解,每组解记为,称为亮点,将这些亮点连接得到一条直线,称这条直线是亮点的隐线,答下列问题:(1)已知,则是隐线的亮点的是;(2)设是隐线的两个亮点,求方程中的最小的正整数解;(3)已知是实数,且,若是隐线的一个亮点,求隐线中的最大值和最小值的和.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】设购买了笔x件,购买了本子(5-x)件,本子的单价为a元,笔的单价为b元,分类讨论解方程即可.【详解】解:设购买了笔x件,购买了本子(5-x)件,本子的单价为a元,笔的单价为b元,列方程组得,当x=1时,原方程组为,解得,符合题意;当x=2时,原方程组为,解得,不符合题意,舍去;当x=3时,原方程组为,解得,不符合题意,舍去;当x=4时,原方程组为,解得,不符合题意,舍去;故选:A.【点睛】本题考查了含参数的二元一次方程组的应用,解题关键是理解题意,找出等量关系,列出方程组,分类讨论解方程组.2.D解析:D【分析】根据新定义运算法则列出方程,由①②解得关于x、y的方程组,解方程组即可.【详解】由新定义,知:(a,b)△(x,y)=(ax+by,ay+bx)=(a,b),则由①+②,得:(a+b)x+(a+b)y=a+b,∵a,b是任意实数,∴x+y=1,③由①−②,得(a−b)x−(a−b)y=a−b,∴x−y=1,④由③④解得,x=1,y=0,∴(x,y)为(1,0);故选D.3.A解析:A【分析】组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程,据此逐一判断即可得答案.【详解】A、符合二元一次方程组的定义,故本选项正确;B、本方程组中含有3个未知数,故本选项错误;C、第一个方程式的xy是二次的,故本选项错误;D、x2是二次的,故本选项错误.故选:A.【点睛】本题考查的是二元一次方程组的定义,掌握定义判断方程组是否是二元一次方程组是解题的关键.4.B解析:B【分析】先根据方程组中x、y相等用y表示出x把原方程组化为关于y、n的二元一次方程组,再用n表示出y的值,代入方程组中另一方程求出n的值即可.【详解】解:∵方程组中的x,y相等,∴原方程组可化为:,由①得,,代入②得,,解得n=-4,故选择:B.【点睛】本题考查的是解二元一次方程组,熟知解二元一次方程组的代入消元法是解答此题的关键.5.D解析:D【分析】首先设同向行驶的相邻两车的距离及车、小王的速度为未知数,根据等量关系把相关数值代入可得到同向行驶的相邻两车的距离及车的速度关系式,相除即可得所求时间.【详解】解:设8路公交车的速度为米/分,小王行走的速度为米/分,同向行驶的相邻两车的间距为米.每隔12分钟从背后驶过一辆8路公交车,则①每隔4分钟从迎面驶来一辆8路公交车,则②由①+②可得,所以,即8路公交车总站发车间隔时间是6分钟.故选:.【点睛】本题考查了二元一次方程组的应用,根据追及问题和相遇问题得到两个等量关系是解题的关键.6.D解析:D【分析】①将x=4,y=1代入检验即可做出判断;②将x和y分别用a表示出来,然后求出x+y=3来判断;③将a=1代入方程组求出方程组的解,代入方程中检验即可;④有x+y=3得到x、y都为自然数的解有4对.【详解】解:①将代入,解得;且满足题意,故①正确;②解方程②得:8y=44a解得:,将y的值代入①得:,所以x+y=3,故无论a取何值,x、y的值都不可能互为相反数,故②正确.③将a=1代入方程组得:,解此方程得:,将x=3,y=0代入方程x+y=3,方程左边=3=右边,是方程的解,故③正确.④因为x+y=3,所以x、y都为自然数的解有,,,.故④正确.则正确的选项有①②③④.故选:D.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.7.C解析:C【分析】通过小明由于粗心把系数抄错了,得到,通过小亮把常数抄错了,得到,便可将原方程组复原,再求解即可.【详解】对于方程组,小明由于粗心把系数抄错了,得到的解是∴解得小亮把常数抄错了,得到的解是∴解得∴原方程组为,解得故答案选:C.【点睛】本题是二元一次方程组错解复原问题.通过错解复原原方程组是本题的关键.8.B解析:B【分析】根据译文可知“人数×8-3=钱数和人数×7+4=钱数”即可列出方程组.【详解】解:由题意可得,,故选:B.【点睛】本题考查列二元一次方程组.解题的关键是明确题意,找出等量关系,列出相应的方程.9.A解析:A【分析】把代入二元一次方程组并解方程组,再把a,b代入.【详解】把代入二元一次方程组,得解得所以=-2故选:A【点睛】本题考查了二元一次方程组的解,以及二元一次方程组的解法,其基本思路是消元,消元的方法有:加减消元法和代入消元法两种,灵活选择合适的方法是解答本题的关键.10.D解析:D【分析】根据题意可得关于x、y的方程组,根据解方程组,可得答案.【详解】解:原方程整理为:(x+y-2)a+(-x+2y+5)=0,由方程的解与a无关,得:,解得,故选:D.【点睛】本题考查了二元一次方程组的解,正确理解题意、得出方程组是解题关键.二、填空题11.37200【分析】设设1个鲍鱼粽的成本为a元,1个水果粽的成本为b元,1个香芋粽的成本为c元,分别表示出A、B礼盒的总成本和总利润,通过题干的已知条件找到等量关系列出方程即可进行求解.【详解】解析:37200【分析】设设1个鲍鱼粽的成本为a元,1个水果粽的成本为b元,1个香芋粽的成本为c元,分别表示出A、B礼盒的总成本和总利润,通过题干的已知条件找到等量关系列出方程即可进行求解.【详解】解:设1个鲍鱼粽的成本为a元,1个水果粽的成本为b元,1个香芋粽的成本为c元,则每盒甲礼盒的成本为(3a+2b+2c)元,每盒乙礼盒的成本为(a+4b+4c)元,∵每盒甲礼盒的成本正好是个鲍鱼粽成本的倍,∴3a+2b+2c=a,∴4b+4c=5a,∴a+4b+4c=6a,∵每盒甲礼盒的售价是在甲礼盒成本的基础上增加了.∴每盒甲礼盒的售价为:(1+)a=7a,∵每盒乙礼盒的利润率为∴每盒乙礼盒的售价为:(1+)6a=7.2a,设销售甲礼盒m个,乙礼盒n个,∵销售甲礼盒的总利润是元∴(7a-5.5a)m=4500,∴am=3000;∵销售这两种盒装礼盒的总利润为,∴4500+(7.2a-6a)n=∴an=2250,∴两种礼盒的总销售额=7am+7.2an=7×3000+7.2×2250=37200(元)故答案为:37200元【点睛】本题考查三元一次方程组的应用,学会利用已知条件进行相互转化是解本题的关键,综合性较强,有一定难度.12.【分析】设一对夫妻,丈夫买了x件商品,妻子买了y件商品,列出关于x、y的二元二次方程,再根据x、y都是正整数,且与有相同的奇偶性,即可得出关于x、y的二元一次方程组,求出x、y的值,再找出符合和解析:【分析】设一对夫妻,丈夫买了x件商品,妻子买了y件商品,列出关于x、y的二元二次方程,再根据x、y都是正整数,且与有相同的奇偶性,即可得出关于x、y的二元一次方程组,求出x、y的值,再找出符合和的情况即可进行解答.【详解】设一对夫妻,丈夫买了件商品,则钱数为,妻子买了件商品,则钱数为,依题意有x2-y2=48,即,∵x、y都是正整数,且与有相同的奇偶性,又∵,48=24×2=12×4=8×6,∴或或,解得,或,或,,符合的只有一种,可见A买了13件商品,b买了4件,同时符合的也只有一种,可知B买了8件,a买了1件,∴C买了7件,c买了11件.由此可知三对夫妻的组合是:A、c;B、b;C、a.故答案为:c.【点睛】本题考查了不定方程组的解及数的奇偶性,根据题意列出关于x、y的不定方程是解答此题的关键.13.51【分析】先设小长方形的长、宽分别为、,由题意列方程组,解得小长方形的长、宽,由可求得,再根据,可解阴影面积.【详解】解:设小长方形的长、宽分别为、,依题意得:,即,解得:,,,解析:51【分析】先设小长方形的长、宽分别为、,由题意列方程组,解得小长方形的长、宽,由可求得,再根据,可解阴影面积.【详解】解:设小长方形的长、宽分别为、,依题意得:,即,解得:,,,,,,本题的答案为51.【点睛】本题考查了二元一次方程组的实际应用,利用了求面积中一种常用的方法割补法,面积总量不变,扣掉较容易求出的图形面积,可得解.14.【分析】设每只雀有x两,每只燕有y两,根据五只雀、六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重,列方程组即可.【详解】解:设每只雀有x两,每只燕有y两,由题意得,【解析:【分析】设每只雀有x两,每只燕有y两,根据五只雀、六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重,列方程组即可.【详解】解:设每只雀有x两,每只燕有y两,由题意得,【点睛】本题考查了有实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.15.﹣2﹣2﹣2【解析】分析:先把x=3y=-2代入ax+by=-2cx-7y=8得3a-2b=-23c+14=8,由方程组中第二个式子可得:c=-2,然后把解x=-2y=解析:﹣2﹣2﹣2【解析】分析:先把代入得,由方程组中第二个式子可得:c=-2,然后把解代入ax+by=-2即可得出答案.解答:解:把代入,得,解得,c=-2.再把代入ax+by=-2,得,解得:,所以a=-2,b=-2,c=-2.故答案为-2,-2,-2.点评:本题考查了二元一次方程组的解,难度适中,关键是对题中已知条件的正确理解与把握.16.【分析】先将方程组的解代入方程组得到c1−a1=2,c2−a2=2,再将所求方程组用加减消元法求解即可.【详解】解:∵方程组的解是,∴,∴c1−a1=2,c2−a2=2,∴可化为,①解析:【分析】先将方程组的解代入方程组得到c1−a1=2,c2−a2=2,再将所求方程组用加减消元法求解即可.【详解】解:∵方程组的解是,∴,∴c1−a1=2,c2−a2=2,∴可化为,①−②,得(a1−a2)x=0,∴x=0,将x=0代入①中,得y=2,∴方程组的解为,故答案为.【点睛】本题考查二元一次方程组的解,会用加减消元法解方程组,并能灵活将方程组变形是解题的关键.17.竹签有15根,山楂有63个;am+b=n.【分析】设竹签有x根,山楂有y个,根据“如果每根竹签串4个山楂,还剩余3个山楂;如果每根竹签串7个山楂,还剩余6根竹签”,即可得出关于x,y的二元一次方解析:竹签有15根,山楂有63个;am+b=n.【分析】设竹签有x根,山楂有y个,根据“如果每根竹签串4个山楂,还剩余3个山楂;如果每根竹签串7个山楂,还剩余6根竹签”,即可得出关于x,y的二元一次方程组,解之即可得出竹签及山楂的数量;利用山楂的个数=每根竹签串的山楂个数×竹签数量+剩余山楂的数量,即可找出m、n、a、b之间的等量关系.【详解】问题解决:设竹签有x根,山楂有y个,依题意得:,解得:.答:竹签有15根,山楂有63个.山楂的个数=每根竹签串的山楂个数×竹签数量+剩余山楂的数量am+b=n.故答案为:am+b=n.【点睛】本题考查了二元一次方程组的应用,根据题意列出方程组是解题的关键.18.【分析】设女生人数为x人,男生人数为y人,根据“该年级有学生367人,且男生比女生人数的2倍少20人”,即可得出关于x,y的二元一次方程组,此题得解.【详解】解:设女生人数为x人,男生人数为解析:【分析】设女生人数为x人,男生人数为y人,根据“该年级有学生367人,且男生比女生人数的2倍少20人”,即可得出关于x,y的二元一次方程组,此题得解.【详解】解:设女生人数为x人,男生人数为y人,∵该年级有学生367人,∴x+y=367;∵男生比女生人数的2倍少20人,∴y=2x﹣20.联立两方程组成方程组.故答案为:.【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.19.0【分析】把x、y的值代入mx+ny=6,得出关于m、n的方程组,再求出方程组的解,最后求出m+n即可得到答案.【详解】∵x=4,y=1和x=2,y=﹣1都是方程mx+ny=6的解,∴解析:0【分析】把x、y的值代入mx+ny=6,得出关于m、n的方程组,再求出方程组的解,最后求出m+n即可得到答案.【详解】∵x=4,y=1和x=2,y=﹣1都是方程mx+ny=6的解,∴①+②,得6m=12解得:m=2,把m=2代入①,得8+n=6,解得:n=﹣2,∴m+n=2+(﹣2)=0,故答案为:0.【点睛】本题考查了二元一次方程及二元一次方程组的知识;解题的关键是熟练掌握二元一次方程组的性质,从而完成求解.20.9【分析】先设原一等奖平均分为x分,原二等奖平均分为y分,原三等奖平均分为z分,由于总分不变,列出方程组,求出原二等奖比三等奖平均分多的分数,最后根据调整后二等奖平均分降低3分,三等奖平均分降低解析:9【分析】先设原一等奖平均分为x分,原二等奖平均分为y分,原三等奖平均分为z分,由于总分不变,列出方程组,求出原二等奖比三等奖平均分多的分数,最后根据调整后二等奖平均分降低3分,三等奖平均分降低1分,列出代数式,即可求出答案.【详解】解:设原一等奖平均分为x分,原二等奖平均分为y分,原三等奖平均分为z分,由于总分不变,得:由①得:x+y-2z=24③将②代入③得:y+2+y-2z=24解得:y-z=11,则调整后二等奖比三等奖平均分数多=(y-3)-(z-1)=(y-z)-2=11-2=9(分).故答案为:9.【点睛】此题主要考查了三元一次方程组的应用,关键是读懂题意,找到等量关系,列出方程组.三、解答题21.(1)A(30,0),C(24,7);(2)≤t<10;(3)见解析【分析】(1)利用非负数的性质求出a=30,b=7,得出A,B的坐标,由平移的性质可得出答案;(2)由题意得出CD=2t,则BD=24﹣2t,OE=3t,根据梯形的面积公式得出S四边形BOED=×(24﹣2t+3t)×7,S四边形ACDE=×7×(2t+30﹣3t),则可得出关于t的不等式,解不等式可得出答案;(3)由题意可得出S△OEF﹣S△DCF=3.5t,根据t>0则可得出结论.【详解】(1)解:∵∴=0,|2a﹣3b﹣39|=0.∴a﹣b﹣23=0,2a﹣3b﹣39=0,解得,a=30,b=7.∴A(30,0),B(0,7),∵点B向右平移24个单位长度得到点C,∴C(24,7).(2)解:由题意得,CD=2t,则BD=24﹣2t,OE=3t,∴S四边形BOED=×(24﹣2t+3t)×7,S四边形ACDE=×7×(2t+30﹣3t),∵S四边形BOED≥S四边形ACDE,∴×(24﹣2t+3t)×7≥××7×(2t+30﹣3t),解得t≥,∵0<t<10,∴≤t<10.(3)证明:∵S△OEF﹣S△DCF=S四边形BOED﹣S△OBC=×(24﹣2t+3t)×7﹣×24×7,∴S△OEF﹣S△DCF=3.5t,∵0<t<10,∴3.5t>0,∴S△OEF﹣S△DCF>0,∴S△OEF>S△DCF.【点睛】本题是四边形综合题,考查了非负数的性质,平移的性质,坐标与图形的性质,梯形的面积,解一元一次不等式,解二元一次方程组,解题的关键学会利用参数解决问题,属于中考常考题型.22.(1)(3,3);(2);(3)(,0)或(,0)【分析】(1)点A既是“健康点”又是“快乐点”,则A坐标应该满足x-2y+3=0和x+y-6=0,解即可得答案;(2)设直线AB交y轴于D,求出B、C、D的坐标,根据S△ABC=S△BCD+S△ACD即可求出答案;(3)设点P的坐标为(n,0),根据△PBC的面积等于△ABC的面积,即,列出方程,解之即可.【详解】解:(1)点A既是“健康点”又是“快乐点”,则A坐标应该满足x-2y+3=0和x+y-6=0,解得:,∴A的坐标为(3,3);故答案为:(3,3);(2)设直线AB交y轴于D,如图:∵B是x轴上的“健康点”,在x-2y+3=0中,令y=0得x=-3,∴B(-3,0),∵C是y轴上的“快乐点”,在x+y-6=0中,令x=0得y=6,∴C(0,6),在x-2y+3=0中,令x=0得y=,∴D(0,),∴CD=,∴S△ABC=S△BCD+S△ACD=CD•|xB|+CD•|xA|==;(3)设点P的坐标为(n,0),则BP=,∵△BPC与△ABC面积相等,∴S△BPC==,∴,∴或,∴点P的坐标为(,0)或(,0).【点睛】本题考查三角形面积,涉及新定义、坐标轴上点坐标特征等知识,解题的关键是理解“健康点”、“快乐点”含义.23.(1)a=60,b=40;(2)①64,38;②x=7,y=12【分析】(1)由图示利用板材的长列出关于a、b的二元一次方程组求解;(2)①根据已知和图示计算出两种裁法共产生A型板材和B型板材的张数;②根据竖式与横式礼品盒所需要的A、B两种型号板材的张数列出关于x、y的二元一次方程组,然后求解即可.【详解】解:(1)由题意得:,解得:,答:图甲中与的值分别为:60、40;(2)①由图示裁法一产生型板材为:,裁法二产生型板材为:,所以两种裁法共产生型板材为(张,由图示裁法一产生型板材为:,裁法二产生型板材为,,所以两种裁法共产生型板材为(张,故答案为:64,38;②根据题意竖式有盖礼品盒的个,横式无盖礼品盒的个,则型板材需要个,型板材需要个,所以,解得.【点睛】本题考查的知识点是二元一次方程组的应用,关键是根据已知先列出二元一次方程组求出a、b的值,根据图示列出算式以及关于x、y的二元一次方程组.24.(1)15;(2)①七年级(1)班有24人得满分;②七年级(2)班的总分高.【分析】(1)分别对连正确的数量进行分析,即可得到答案;(2)①设七年(1)班满分人数有x人,则未满分的有人,然后列出方程,解方程即可得到答案;②根据题意,先求出两个班各分数段的人数,然后求出各班的总分,即可进行比较.【详解】解:(1)根据题意,连对0个得分为0分;连对一个得分为5分;连对两个得分为10分;连对四个得分为20分;不存在连对三个的情况,则得15分是不可能的;故答案为:15.(2)①根据题意,设七年(1)班满分人数有x人,则未满分的有人,则,解得:,∴(1)班有24人得满分;②根据题意,(1)班中除0分外,最低得分人数与其他未满分人数相等,∴(1)班得5分和10分的人数相等,人数为:(人);∴(1)班得总分为:(分);由题意,(2)班存在得5分、得10分、得20分,三种情况,设得5分的有y人,得10分的有z人,满分20分的有人,∴,∴,∴七(2)班得总分为:(分);∵,∴七(2)班的总分高.【点睛】本题考查了二元一次方程的应用,一元一次方程的应用,解题的关键是熟练掌握题意,正确掌握题目的等量关系,列出方程进行解题.25.(1),,;(2)见解析.【分析】(1)令中的,求出相应的x的值,即可得到A的坐标,将方程和方程联立成方程组,解方程组即可得到C的坐标,进而可得到B的坐标;(2)分别利用梯形的面积公式表示出四边形MNAC的面积与四边形MNOB的面积,然后根据t的范围,分情况讨论即可.【详解】(1)令,则,解得,.解得.轴,∴点B的纵坐标与点C的纵坐标相同,;(2),,,.∵点M从点C以每秒1个单位长度的速度向左运动,同时点N从点O以每秒1.5个单位长度的速度向右运动,,,,.当时,即时,;当时,即时,;当时,即时,.【点睛】本题主要考查二元一次方程及方程组的应用,数形结合并分情况讨论是解题的关键.26.(1)19a;(2)315;(3).【解析】【分析】(1)首先根据题意,求得S△A1BC=2S△ABC,同理可求得S△A1B1C=2S△A1BC,依此得到S△A1B1C1=19S△ABC,则可求得面积S1的值;(2)根据等高不等底的三角形的面积的比等于底边的比,求解,从而不难求得△ABC的面积;(3)设S△BPF=m,S△APE=n,依题意,得S△APF=S△APC=m,S△BPC=S△BPF=m.得出,从而求解.【详解】解:(1)连接A1C,∵B1C=2BC,A1B=2AB,∴,,,∴,∴,同理可得出:,∴S1=6a+6a+6a+a=19a;故答案为:19a;(2)过点作于点,设,,;,.,即.同理,...①,,.②由①②,得,.(3)设,,如图所示.依题意,得,..,.,,...【点睛】此题考查了三角形面积之间的关系.(2)的关键是设出未知三角形的面积,然后根据等高不等底的三角形的面积的比等于底边的比列式求解.27.(1),;(2);(3)【解析】【分析】(1)利用非负数的性质即可解决问题;(2)利用三角形面积求法,由列方程组,求出点C坐标,进而由△ACD面积求出D点坐标.(3)由平行线间距离相等得到,继而求出E点坐标,同理求出F点坐标,再由GE=12求出G点坐标,根据求出PG的长即可求P点坐标.【详解】解:(1),∴,,,,,,,(2)由∴,,,如图1,连,作轴,轴,,即,,,而,,,,(3)如图2:∵EF∥AB,∴,∴,即,,,,,,,,,,,,,,【点睛】本题考查的是二元一次方程的应用、三角形的面积
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 买卖首付房子合同样本
- 代理卖房合同样本
- 水资源珍惜与公众参与计划
- 农村锅炉出租合同范例
- 急诊部门协同工作流程计划
- 企业废料收购合同标准文本
- 入职材料合同标准文本
- 借车位合同样本
- 供热工程劳务合同样本
- 货架管理与优化策略计划
- 三星堆文化遗迹中国风动态PPT
- DB44-T 2283-2021水利工程生态设计导则1-(高清现行)
- XX县城区新建公厕、生活垃圾中转站项目实施方案可行性研究报告
- 哈萨克斯坦铁路车站代码
- 利润分配专项审计
- 探索性数据分析简介课件
- 螺纹的标注-PPT课件
- 勇者斗恶龙之怪兽仙境图表资料合集(合成表技能)
- 履带式液压挖掘机挖掘机构设计
- 原材料进厂检验管理制度及检验规程
- 川崎病诊治指南最新ppt课件
评论
0/150
提交评论