版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省德阳旌阳区六校联考2024届中考数学最后一模试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD的中点,则下列结论:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正确结论的是()A.①③④ B.②④⑤ C.①③⑤ D.①③④⑤2.下列计算正确的是()A.2x﹣x=1 B.x2•x3=x6C.(m﹣n)2=m2﹣n2 D.(﹣xy3)2=x2y63.如图,两个同心圆(圆心相同半径不同的圆)的半径分别为6cm和3cm,大圆的弦AB与小圆相切,则劣弧AB的长为()A.2πcm B.4πcm C.6πcm D.8πcm4.如图所示是8个完全相同的小正方体组成的几何体,则该几何体的左视图是()A. B.C. D.5.某校九年级一班全体学生2017年中招理化生实验操作考试的成绩统计如下表,根据表中的信息判断,下列结论中错误的是()成绩(分)3029282618人数(人)324211A.该班共有40名学生B.该班学生这次考试成绩的平均数为29.4分C.该班学生这次考试成绩的众数为30分D.该班学生这次考试成绩的中位数为28分6.如图,Rt△ABC中,∠C=90°,AC=4,BC=4,两等圆⊙A,⊙B外切,那么图中两个扇形(即阴影部分)的面积之和为()A.2π B.4π C.6π D.8π7.内角和为540°的多边形是()A. B. C. D.8.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃ B.零下3℃ C.零上7℃ D.零下7℃9.下列四个实数中,比5小的是()A. B. C. D.10.不等式3x≥x-5的最小整数解是()A.-3 B.-2 C.-1 D.2二、填空题(共7小题,每小题3分,满分21分)11.如图,已知直线,直线m、n与a、b、c分别交于点A、C、E和B、D、F,如果,,,那么______.12.比较大小:4(填入“>”或“<”号)13.如图所示,直线y=x+b交x轴A点,交y轴于B点,交双曲线于P点,连OP,则OP2﹣OA2=__.14.不等式5﹣2x<1的解集为_____.15.一组数据7,9,8,7,9,9,8的中位数是__________16.化简:_____________.17.如图,AB∥CD,∠1=62°,FG平分∠EFD,则∠2=.三、解答题(共7小题,满分69分)18.(10分)如图,已知的直径,是的弦,过点作的切线交的延长线于点,过点作,垂足为,与交于点,设,的度数分别是,,且.(1)用含的代数式表示;(2)连结交于点,若,求的长.19.(5分)计算:|﹣2|+8+(2017﹣π)0﹣4cos45°20.(8分)如图1,已知直线l:y=﹣x+2与y轴交于点A,抛物线y=(x﹣1)2+m也经过点A,其顶点为B,将该抛物线沿直线l平移使顶点B落在直线l的点D处,点D的横坐标n(n>1).(1)求点B的坐标;(2)平移后的抛物线可以表示为(用含n的式子表示);(3)若平移后的抛物线与原抛物线相交于点C,且点C的横坐标为a.①请写出a与n的函数关系式.②如图2,连接AC,CD,若∠ACD=90°,求a的值.21.(10分)为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元.(1)甲、乙两种套房每套提升费用各多少万元?(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?22.(10分)计算:.先化简,再求值:,其中.23.(12分)某商场将每件进价为80元的某种商品按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元.求出y与x之间的函数关系式,并求当x取何值时,商场获利润最大?24.(14分)学了统计知识后,小红就本班同学上学“喜欢的出行方式”进行了一次调查,图(1)和图(2)是她根据采集的数据绘制的两幅不完整的统计图,请根据图中提供的信息解答以下问题:(1)补全条形统计图,并计算出“骑车”部分所对应的圆心角的度数.(2)若由3名“喜欢乘车”的学生,1名“喜欢骑车”的学生组队参加一项活动,现欲从中选出2人担任组长(不分正副),求出2人都是“喜欢乘车”的学生的概率,(要求列表或画树状图)
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】
根据正方形的性质可得AB=BC=AD,∠ABC=∠BAD=90°,再根据中点定义求出AE=BF,然后利用“边角边”证明△ABF和△DAE全等,根据全等三角形对应角相等可得∠BAF=∠ADE,然后求出∠ADE+∠DAF=∠BAD=90°,从而求出∠AMD=90°,再根据邻补角的定义可得∠AME=90°,从而判断①正确;根据中线的定义判断出∠ADE≠∠EDB,然后求出∠BAF≠∠EDB,判断出②错误;根据直角三角形的性质判断出△AED、△MAD、△MEA三个三角形相似,利用相似三角形对应边成比例可得,然后求出MD=2AM=4EM,判断出④正确,设正方形ABCD的边长为2a,利用勾股定理列式求出AF,再根据相似三角形对应边成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判断出⑤正确;过点M作MN⊥AB于N,求出MN、NB,然后利用勾股定理列式求出BM,过点M作GH∥AB,过点O作OK⊥GH于K,然后求出OK、MK,再利用勾股定理列式求出MO,根据正方形的性质求出BO,然后利用勾股定理逆定理判断出∠BMO=90°,从而判断出③正确.【详解】在正方形ABCD中,AB=BC=AD,∠ABC=∠BAD=90°,
∵E、F分别为边AB,BC的中点,
∴AE=BF=BC,
在△ABF和△DAE中,,
∴△ABF≌△DAE(SAS),
∴∠BAF=∠ADE,
∵∠BAF+∠DAF=∠BAD=90°,
∴∠ADE+∠DAF=∠BAD=90°,
∴∠AMD=180°-(∠ADE+∠DAF)=180°-90°=90°,
∴∠AME=180°-∠AMD=180°-90°=90°,故①正确;
∵DE是△ABD的中线,
∴∠ADE≠∠EDB,
∴∠BAF≠∠EDB,故②错误;
∵∠BAD=90°,AM⊥DE,
∴△AED∽△MAD∽△MEA,
∴∴AM=2EM,MD=2AM,
∴MD=2AM=4EM,故④正确;
设正方形ABCD的边长为2a,则BF=a,
在Rt△ABF中,AF=∵∠BAF=∠MAE,∠ABC=∠AME=90°,
∴△AME∽△ABF,
∴,
即,
解得AM=
∴MF=AF-AM=,
∴AM=MF,故⑤正确;
如图,过点M作MN⊥AB于N,
则即解得MN=,AN=,
∴NB=AB-AN=2a-=,
根据勾股定理,BM=过点M作GH∥AB,过点O作OK⊥GH于K,
则OK=a-=,MK=-a=,
在Rt△MKO中,MO=根据正方形的性质,BO=2a×,
∵BM2+MO2=
∴BM2+MO2=BO2,
∴△BMO是直角三角形,∠BMO=90°,故③正确;
综上所述,正确的结论有①③④⑤共4个.故选:D【点睛】本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理的应用,勾股定理逆定理的应用,综合性较强,难度较大,仔细分析图形并作出辅助线构造出直角三角形与相似三角形是解题的关键.2、D【解析】
根据合并同类项的法则,积的乘方,完全平方公式,同底数幂的乘法的性质,对各选项分析判断后利用排除法求解.【详解】解:A、2x-x=x,错误;B、x2•x3=x5,错误;C、(m-n)2=m2-2mn+n2,错误;D、(-xy3)2=x2y6,正确;故选D.【点睛】考查了整式的运算能力,对于相关的整式运算法则要求学生很熟练,才能正确求出结果.3、B【解析】
首先连接OC,AO,由切线的性质,可得OC⊥AB,根据已知条件可得:OA=2OC,进而求出∠AOC的度数,则圆心角∠AOB可求,根据弧长公式即可求出劣弧AB的长.【详解】解:如图,连接OC,AO,
∵大圆的一条弦AB与小圆相切,
∴OC⊥AB,
∵OA=6,OC=3,
∴OA=2OC,
∴∠A=30°,
∴∠AOC=60°,
∴∠AOB=120°,
∴劣弧AB的长==4π,
故选B.【点睛】本题考查切线的性质,弧长公式,熟练掌握切线的性质是解题关键.4、A【解析】分析:根据主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形,从而得出该几何体的左视图.详解:该几何体的左视图是:故选A.点睛:本题考查了学生的思考能力和对几何体三种视图的空间想象能力.5、D【解析】A.∵32+4+2+1+1=40(人),故A正确;B.∵(30×32+29×4+28×2+26+18)÷40=29.4(分),故B正确;C.∵成绩是30分的人有32人,最多,故C正确;D.该班学生这次考试成绩的中位数为30分,故D错误;6、B【解析】
先依据勾股定理求得AB的长,从而可求得两圆的半径为4,然后由∠A+∠B=90°可知阴影部分的面积等于一个圆的面积的.【详解】在△ABC中,依据勾股定理可知AB==8,∵两等圆⊙A,⊙B外切,∴两圆的半径均为4,∵∠A+∠B=90°,∴阴影部分的面积==4π.故选:B.【点睛】本题主要考查的是相切两圆的性质、勾股定理的应用、扇形面积的计算,求得两个扇形的半径和圆心角之和是解题的关键.7、C【解析】试题分析:设它是n边形,根据题意得,(n﹣2)•180°=140°,解得n=1.故选C.考点:多边形内角与外角.8、B【解析】试题分析:由题意知,“-”代表零下,因此-3℃表示气温为零下3℃.故选B.考点:负数的意义9、A【解析】
首先确定无理数的取值范围,然后再确定是实数的大小,进而可得答案.【详解】解:A、∵5<<6,∴5﹣1<﹣1<6﹣1,∴﹣1<5,故此选项正确;B、∵∴,故此选项错误;C、∵6<<7,∴5<﹣1<6,故此选项错误;D、∵4<<5,∴,故此选项错误;故选A.【点睛】考查无理数的估算,掌握无理数估算的方法是解题的关键.通常使用夹逼法.10、B【解析】
先求出不等式的解集,然后从解集中找出最小整数即可.【详解】∵3x≥x-5,∴3x-x≥-5,∴x≥-5∴不等式3x≥x-5的最小整数解是x=-2.故选B.【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.最后一步系数化为1时,如果未知数的系数是负数,则不等号的方向要改变,如果系数是正数,则不等号的方不变.二、填空题(共7小题,每小题3分,满分21分)11、【解析】
由直线a∥b∥c,根据平行线分线段成比例定理,即可得,又由AC=3,CE=5,DF=4,即可求得BD的长.【详解】解:由直线a∥b∥c,根据平行线分线段成比例定理,即可得,又由AC=3,CE=5,DF=4可得:解得:BD=.故答案为.【点睛】此题考查了平行线分线段成比例定理.题目比较简单,解题的关键是注意数形结合思想的应用.12、>【解析】
试题解析:∵<∴4<.考点:实数的大小比较.【详解】请在此输入详解!13、1【解析】解:∵直线y=x+b与双曲线(x>0)交于点P,设P点的坐标(x,y),∴x﹣y=﹣b,xy=8,而直线y=x+b与x轴交于A点,∴OA=b.又∵OP2=x2+y2,OA2=b2,∴OP2﹣OA2=x2+y2﹣b2=(x﹣y)2+2xy﹣b2=1.故答案为1.14、x>1.【解析】
根据不等式的解法解答.【详解】解:,.故答案为【点睛】此题重点考查学生对不等式解的理解,掌握不等式的解法是解题的关键.15、1【解析】
将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,据此可得.【详解】解:将数据重新排列为7、7、1、1、9、9、9,所以这组数据的中位数为1,故答案为1.【点睛】本题主要考查中位数,解题的关键是掌握中位数的定义.16、【解析】
根据分式的运算法则即可求解.【详解】原式=.故答案为:.【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.17、31°.【解析】试题分析:由AB∥CD,根据平行线的性质得∠1=∠EFD=62°,然后根据角平分线的定义即可得到∠2的度数.∵AB∥CD,∴∠1=∠EFD=62°,∵FG平分∠EFD,∴∠2=12∠EFD=1故答案是31°.考点:平行线的性质.三、解答题(共7小题,满分69分)18、(1);(2)【解析】
(1)连接OC,根据切线的性质得到OC⊥DE,可以证明AD∥OC,根据平行线的性质可得,则根据等腰三角形的性质可得,利用,化简计算即可得到答案;
(2)连接CF,根据,可得,利用中垂线和等腰三角形的性质可证四边形是平行四边形,得到△AOF为等边三角形,由并可得四边形是菱形,可证是等边三角形,有∠FAO=60°,再根据弧长公式计算即可.【详解】解:(1)如图示,连结,∵是的切线,∴.又,∴,∴,∴.∵,∴.∴.∵,∴.∴,即.(2)如图示,连结,∵,,∴,∴,∴,∴,∵,∴四边形是平行四边形,∵,∴四边形是菱形,∴,∴是等边三角形,∴,∴,∵,∴的长.【点睛】本题考查的是切线的性质、菱形的判定和性质、弧长的计算,掌握切线的性质定理、弧长公式是解题的关键.19、1.【解析】
直接利用零指数幂的性质以及特殊角的三角函数值和绝对值的性质分别化简得出答案.【详解】解:原式=2+22+1﹣4×2=2+22+1﹣22=1.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.20、(1)B(1,1);(2)y=(x﹣n)2+2﹣n.(3)a=;a=+1.【解析】
1)首先求得点A的坐标,再求得点B的坐标,用h表示出点D的坐标后代入直线的解析式即可验证答案。(2)①根据两种不同的表示形式得到m和h之间的函数关系即可。②点C作y轴的垂线,垂足为E,过点D作DF⊥CE于点F,证得△ACE~△CDF,然后用m表示出点C和点D的坐标,根据相似三角形的性质求得m的值即可。【详解】解:(1)当x=0时候,y=﹣x+2=2,∴A(0,2),把A(0,2)代入y=(x﹣1)2+m,得1+m=2∴m=1.∴y=(x﹣1)2+1,∴B(1,1)(2)由(1)知,该抛物线的解析式为:y=(x﹣1)2+1,∵∵D(n,2﹣n),∴则平移后抛物线的解析式为:y=(x﹣n)2+2﹣n.故答案是:y=(x﹣n)2+2﹣n.(3)①∵C是两个抛物线的交点,∴点C的纵坐标可以表示为:(a﹣1)2+1或(a﹣n)2﹣n+2由题意得(a﹣1)2+1=(a﹣n)2﹣n+2,整理得2an﹣2a=n2﹣n∵n>1∴a==.②过点C作y轴的垂线,垂足为E,过点D作DF⊥CE于点F∵∠ACD=90°,∴∠ACE=∠CDF又∵∠AEC=∠DFC∴△ACE∽△CDF∴=.又∵C(a,a2﹣2a+2),D(2a,2﹣2a),∴AE=a2﹣2a,DF=m2,CE=CF=a∴=∴a2﹣2a=1解得:a=±+1∵n>1∴a=>∴a=+1【点睛】本题主要考查二次函数的应用和相似三角形的判定与性质,需综合运用各知识求解。21、(1)甲、乙两种套房每套提升费用为25、1万元;(2)甲种套房提升2套,乙种套房提升30套时,y最小值为2090万元.【解析】
(1)设甲种套房每套提升费用为x万元,根据题意建立方程求出其解即可;(2)设甲种套房提升m套,那么乙种套房提升(80-m)套,根据条件建立不等式组求出其解就可以求出提升方案,再表示出总费用与m之间的函数关系式,根据一次函数的性质就可以求出结论.【详解】(1)设乙种套房提升费用为x万元,则甲种套房提升费用为(x﹣3)万元,则,解得x=1.经检验:x=1是分式方程的解,答:甲、乙两种套房每套提升费用为25、1万元;(2)设甲种套房提升a套,则乙种套房提升(80﹣a)套,则2090≤25a+1(80﹣a)≤2096,解得48≤a≤2.∴共3种方案,分别为:方案一:甲种套房提升48套,乙种套房提升32套.方案二:甲种套房提升49套,乙种套房提升31套,方案三:甲种套房提升2套,乙种套房提升30套.设提升两种套房所需要的费用为y万元,则y=25a+1(80﹣a)=﹣3a+2240,∵k=﹣3,∴当a取最大值2时,即方案三:甲种套房提升2套,乙种套房提升30套时,y最小值为2090万元.【点睛】本题考查了一次函数的性质的运用,列分式方程解实际问题的运用,列一元一次不等式组解实际问题的运用.解答时建立方程求出甲,乙两种套房每套提升费用是关键,是解答第二问的必要过程.22、(1)1;(2)2-1.【解析】
(1)分别计算负指数幂、绝对值、零指数幂、特殊角的三角函数值、立方根;(2)先把括号内通分相减,再计算分式的除法,除以一个分式,等于乘它的分子、分母交换位置.【详解】(1)原式=3+﹣1﹣2×+1﹣2=3+﹣1﹣+1﹣2=1.(2)原式=[﹣]•=•=,当x=﹣2时,原式===2-1.【点睛】本题考查负指数幂、绝对值、零指数幂、特殊角的三角函数值、立方根以及分式的化简求值,解题关键是熟练掌握以上性质和分式的混合运算.23、(1)商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元;(2)y=﹣10x2+100x+2000,当x=5时,商场获取最大利润为2250元.【解析】
(1)根据“总利润=每件的利润×每天的销量
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024工程承包资金周转借款合同
- 2024年度商品代销协议书3篇
- 2024年全球艺术品拍卖与交易合同
- 2024年专业护坡工程安装施工承包合同版B版
- 2024公司委托代持股协议
- 2024年大型油田勘探开发与合作合同
- 2024年度人工智能技术研发与许可协议
- 2024国际贸易中合同的内容及格式
- 2024年墓穴风水咨询与规划合同
- 2024年劳务派遣协议修订协议正式版一
- 江苏省苏州市2024-2025学年高三上学期11月期中调研数学试题 含解析
- 《新能源材料专业英语》教学大纲
- 8《彩色的梦》说课稿-2023-2024学年统编版语文二年级下册
- 人教版2024-2025学年八年级上学期数学14.3因式分解同步练习基础卷(含答案)
- 2024年河南省公务员录用考试《行测》真题及答案解析
- 大河的馈赠 课件 2024-2025学年鲁教版(五四制)初中美术六年级上册
- 2025年蛇年年会汇报年终总结大会模板
- 新编苏教版一年级科学上册实验报告册(典藏版)
- 广东省广州市2024年中考数学真题试卷(含答案)
- 胎盘早剥课件
- 九年级化学上册第四章《认识化学变化》测试卷-沪教版(含答案)
评论
0/150
提交评论