第13章《轴对称》知识讲练(学生版)_第1页
第13章《轴对称》知识讲练(学生版)_第2页
第13章《轴对称》知识讲练(学生版)_第3页
第13章《轴对称》知识讲练(学生版)_第4页
第13章《轴对称》知识讲练(学生版)_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

20232024学年人教版数学八年级上册章节知识讲练知识点01:轴对称1.轴对称图形和轴对称(1)轴对称图形

如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.(2)轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴.成轴对称的两个图形的性质:①关于某条直线对称的两个图形形状相同,大小相等,是全等形;②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上.(3)轴对称图形与轴对称的区别和联系区别:轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的.联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形.2.线段的垂直平分线线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.反过来,与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.知识点02:作轴对称图形1.作轴对称图形(1)几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些点,就可以得到原图形的轴对称图形;(2)对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.2.用坐标表示轴对称点(,)关于轴对称的点的坐标为(,-);点(,)关于轴对称的点的坐标为(-,);点(,)关于原点对称的点的坐标为(-,-).知识点03:等腰三角形1.等腰三角形

(1)定义:有两边相等的三角形,叫做等腰三角形.(2)等腰三角形性质①等腰三角形的两个底角相等,即“等边对等角”;②等腰三角形顶角的平分线、底边上的中线与底边上的高线互相重合(简称“三线合一”).特别地,等腰直角三角形的每个底角都等于45°.(3)等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(即“等角对等边”).2.等边三角形(1)定义:三条边都相等的三角形,叫做等边三角形.(2)等边三角形性质:等边三角形的三个角相等,并且每个角都等于60°.(3)等边三角形的判定:①三条边都相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形;③有一个角为60°的等腰三角形是等边三角形.3.直角三角形的性质定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2023春•市期中)如图,△ABC中,边AB的垂直平分线分别交BC、AB于点D、E,AE=3cm,△ADC的周长为8cm,则△ABC的周长是()​A.14cm B.17cm C.19cm D.20cm2.(2分)(2023春•福田区校级期末)如图,三座商场分别坐落在A、B、C所在位置,现要规划一个地铁站,使得该地铁站到三座商场的距离相等,该地铁站应建在()A.三角形三条中线的交点 B.三角形三条高所在直线的交点 C.三角形三个内角的角平分线的交点 D.三角形三条边的垂直平分线的交点3.(2分)(2022秋•晋州市期末)等腰三角形的顶角为40°,则底角的度数为()A.25° B.60° C.70° D.140°4.(2分)(2022秋•西宁期末)如图,MN是线段AB的垂直平分线,点C在MN外,且与A点在MN的同一侧,连接BC交MN于点P,连接AP,则()A.BC>PC+AP B.BC=PC+AP C.BC<PC+AP D.BC≤PC+AP5.(2分)(2022秋•西宁期末)如图,直线l,m相交于点O.P为这两直线外一点,且OP=3.6.若点P关于直线l,m的对称点分别是点P1,P2,则P1,P2之间的距离不可能是()A.8 B.7 C.6 D.56.(2分)(2023春•永春县期末)如图为一张锐角三角形纸片ABC,小明想要通过折纸的方式折出如下线段:①BC边上的中线AD;②∠A的平分线AE;③BC边上的高AF.根据所学知识与相关活动经验可知:上述三条线中,能够通过折纸折出的有()A.①②③ B.①② C.①③ D.②③7.(2分)(2022秋•岳麓区校级期末)如图,在四边形ABCD中,∠ABC=60°,BD平分∠ABC,∠BCD>∠CBD,BC=24,P,Q分别是BD,BC上的动点,当CP+PQ取得最小值时,BQ的长是()A.8 B.10 C.12 D.168.(2分)(2023•洪泽区一模)如图,四边形ABCD中,AB=AD,点B关于AC的对称点B'恰好落在CD上,若∠BAD=α,则∠ACB的度数为()A.45° B.α﹣45° C.α D.90°﹣α9.(2分)(2022秋•龙江县期末)如图,在△ABC中,AB=AC,DE⊥AC于点E,交AB于点M且AE=CE,以点C为圆心,CA长为半径作弧,交DE于点F,连接CF交AB于点G.若CG=FG,则∠B的度数为()A.75° B.70° C.65° D.60°10.(2分)(2022秋•武昌区期末)如图,在四边形ABCD中,AB=AD=12,BC=DC,∠A=60°,点E在AD上,连接BD,CE相交于点F,CE∥AB.若CE=9,则CF的长为()A.4 B.5 C.6 D.8二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2023•袁州区校级二模)如图,在△ABC中,AB=AC,AD是BC边上的高,图中线段上一动点E,若满足AE=CE,AB=6,∠BAC=30°,则以AE为边长的正方形面积是.12.(2分)(2023春•达州期末)如图,在△ABC中,AC=BC,∠B=44°,点D是边AB上一点,点B关于直线CD的对称点为B′,当B′D∥AC时,则∠BCD的度数为.13.(2分)(2022秋•晋州市期末)如图所示,图中所有的三角形都是等边三角形.若其中最小的等边三角形的边长为1cm,则图中涂有阴影的等边三角形的边长为cm,周长为cm,面积为cm2.14.(2分)(2023春•渝中区校级期末)如图,在△ABC中,AB=AC,D,E是△ABC内的两点,AE平分∠BAC,∠D=∠DBC=60°,若BD=10cm,DE=6cm,则BC的长是cm.15.(2分)(2022秋•湖里区校级期末)如图,所示,点O在一块直角三角板ABC上(其中∠ABC=30°),OM⊥Ab于点M,0M⊥BC于点N;若OM=ON,则∠ABO=度.16.(2分)(2022秋•龙潭区校级期末)如图,在△ABC中,∠B=∠C=30°,AD⊥AB交BC于点D,BC=30,则AD=.17.(2分)(2023•桐柏县一模)如图,点P是∠AOB内一点,OP=m,∠AOB=α,点P关于直线OA的对称点为点Q,关于直线OB的对称点为点T,连接QT,分别交OA,OB于点M,N,连接PM,PN,下列结论:①∠OTQ=90°﹣α;②当α=30°时,△PMN的周长为m;③0<QT<2m;④∠MPN=180°﹣2α,其中正确的有(填序号).18.(2分)(2023•东莞市三模)如图,等腰△ABC的底边BC长为6,面积是30,腰AC的垂直平分线EF分别交AC,AB边于点E,F,若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为.19.(2分)(2022秋•鼓楼区校级期末)如图,在△ABC中,∠ACB=90°,∠B=30°,D在AB上,E在CB上,A,C关于DE的对称点分别是G,F,若F在AB上,DG⊥AB,DG=+1,则DE的长是.20.(2分)(2022秋•道县期末)如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③OP=OQ;④△CPQ为等边三角形;⑤∠AOB=60°.其中正确的有.(注:把你认为正确的答案序号都写上)三.解答题(共8小题,满分60分)21.(6分)(2023春•福田区校级期末)如图,在所给正方形网格图中完成下列各题:(用直尺画图,保留痕迹)(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)在DE上画出点Q,使QA+QC最小;(3)求△ABC的面积.22.(6分)(2023春•汉阳区期末)如图1,D为BA延长线上一点,∠CAD的角平分线交BC垂直平分线于点E,交BC延长线上一点F.(1)作△AEC关于直线EF的轴对称图形△AEG;(2)求证:∠BEC=∠BAC;(3)如图2,P为线段EF(不与E、F点重合)上异于A点的任一点,试比较PB+PC与AB+AC的大小关系,并说明理由.23.(8分)(2022秋•保康县期末)如图,在9×9的正方形网格中,△ABC三个顶点在格点上,每个小正方形的边长为1.(1)建立适当的平面直角坐标系后,若点A的坐标为(2,1),点C的坐标为(5,2),画出平面直角坐标系并写出点B的坐标;(2)直线l经过点A且与y轴平行,写出点B、C关于直线l对称点B1、C1的坐标;(3)直接写出BC上一点P(a,b)关于直线l对称点P1的坐标.24.(8分)(2023春•揭东区期末)已知,在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC.(1)【特殊情况,探索结论】如图1,当点E为AB的中点时,确定线段AE与DB的大小关系,请你直接写出结论:AEDB(填“>”、“<”或“=”).(2)【特例启发,解答题目】如图2,当点E为AB边上任意一点时,确定线段AE与DB的大小关系,请你直接写出结论,AEDB(填“>”、“<”或“=”);理由如下,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程).(3)【拓展结论,设计新题】在等边三角形ABC中,点E在直线AB上,点D在线段CB的延长线上,且ED=EC,若△ABC的边长为1,AE=2,求CD的长(请你画出相应图形,并直接写出结果).25.(8分)(2022秋•襄州区期末)如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)作出△ABC关于y轴的对称图形△A'B'C';(2)写出点A',B',C'的坐标.(3)在y轴上找一点P,使PA+PC的长最短.26.(8分)(2022秋•潜江期末)如图,在△ABC中,∠C=90°,∠A=30°,AB=60cm,动点P、Q同时从A、B两点出发,分别在AB、BC边上匀速移动,它们的速度分别为VP=2cm/s,VQ=1cm/s,当点P到达点B时,P、Q两点同时停止运动,设点P的运动时间为ts.(1)当t为何值时,△PBQ为等边三角形?(2)当t为何值时,△PBQ为直角三角形?27.(8分)(2023春•丹东期末)在△ABC和△DCE中,CA=CB,CD=CE,∠CAB=∠CED=α.(1)如图1,将AD、EB延长,延长线相交于点O:①求证:BE=AD;②用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论