![湖北省黄冈市浠水县实验高级中学2025届高二上数学期末考试模拟试题含解析_第1页](http://file4.renrendoc.com/view8/M00/0A/25/wKhkGWcUDOaAE7MQAAKzx3Kj3Tc892.jpg)
![湖北省黄冈市浠水县实验高级中学2025届高二上数学期末考试模拟试题含解析_第2页](http://file4.renrendoc.com/view8/M00/0A/25/wKhkGWcUDOaAE7MQAAKzx3Kj3Tc8922.jpg)
![湖北省黄冈市浠水县实验高级中学2025届高二上数学期末考试模拟试题含解析_第3页](http://file4.renrendoc.com/view8/M00/0A/25/wKhkGWcUDOaAE7MQAAKzx3Kj3Tc8923.jpg)
![湖北省黄冈市浠水县实验高级中学2025届高二上数学期末考试模拟试题含解析_第4页](http://file4.renrendoc.com/view8/M00/0A/25/wKhkGWcUDOaAE7MQAAKzx3Kj3Tc8924.jpg)
![湖北省黄冈市浠水县实验高级中学2025届高二上数学期末考试模拟试题含解析_第5页](http://file4.renrendoc.com/view8/M00/0A/25/wKhkGWcUDOaAE7MQAAKzx3Kj3Tc8925.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省黄冈市浠水县实验高级中学2025届高二上数学期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,角,,所对的边分别为,,,若,则的形状为()A.锐角三角形 B.直角三角形C.钝角三角形 D.不确定2.已知命题p:∀x>2,x2>2x,命题q:∃x0∈R,ln(x02+1)<0,则下列命题是真命题的是()A.p∧ B.p∨C.p∧q D.p∨q3.已知数列满足,则满足的的最大取值为()A.6 B.7C.8 D.94.已知,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.算盘是中国传统计算工具,是中国人在长期使用算筹的基础上发明的,“珠算”一词最早见于东汉徐岳所撰的《数术记遗》,其中有云:“珠算控带四时,经纬三才.”北周甄鸾为此作注,大意是:把木板刻为3部分,上、下两部分是停游珠用的,中间一部分是作定位用的.下图是一把算盘的初始状态,自右向左,分别是个位、十位、百位…,上面一粒珠(简称上珠)代表5,下面一粒珠(简称下珠)是1,即五粒下珠的大小等于同组一粒上珠的大小.现在从个位和十位这两组中随机选择往下拨一粒上珠,往上拨3粒下珠,得到的数为质数(除了1和本身没有其它的约数)的概率是()A. B.C. D.6.已知一个圆锥体积为,任取该圆锥的两条母线a,b,若a,b所成角的最大值为,则该圆锥的侧面积为()A. B.C. D.7.如图,某绿色蔬菜种植基地在A处,要把此处生产的蔬菜沿道路或运送到形状为四边形区域的农贸市场中去,现要求在农贸市场中确定一条界线,使位于界线一侧的点沿道路运送蔬菜较近,而另一侧的点沿道路运送蔬菜较近,则该界线所在曲线为()A.圆 B.椭圆C.双曲线 D.抛物线8.已知等比数列满足,,则()A.21 B.42C.63 D.849.若函数在区间内存在单调递增区间,则实数的取值范围是()A. B.C. D.10.若双曲线经过点,且它的两条渐近线方程是,则双曲线的方程是()A. B.C. D.11.三棱锥A-BCD中,E,F,H分别为边CD,AD,BC的中点,BE,DH的交点为G,则的化简结果为()A. B.C. D.12.点到直线的距离为A.1 B.2C.3 D.4二、填空题:本题共4小题,每小题5分,共20分。13.设在中,角A、B、C所对的边分别为a、b、c,从下列四个条件:①;②;③;④中选出三个条件,能使满足所选条件的存在且唯一的所有c的值为______.14.已知,分别是椭圆和双曲线的离心率,,是它们的公共焦点,M是它们的一个公共点,且,则的最大值为______15.正三棱柱的底面边长为2,侧棱长为,则与侧面所成角的正弦值为______16.已知空间向量,,,若,,共面,则实数___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前n项和为,且,,数列满足:,,,.(1)求数列,的通项公式;(2)求数列的前n项和;(3)若不等式对任意恒成立,求实数k的取值范围18.(12分)如图,在直棱柱中,已知,点分别的中点.(1)求异面直线与所成的角的大小;(2)求点到平面的距离;(3)在棱上是否存在一点,使得直线与平面所成的角的大小是?若存在,请指出点的位置,若不存在,请说明理由.19.(12分)已知圆,其圆心在直线上.(1)求的值;(2)若过点的直线与相切,求的方程.20.(12分)已知椭圆的一个焦点是,且离心率.(1)求椭圆的方程;(2)设过点的直线交于两点,线段的垂直平分线交轴于点,求的取值范围.21.(12分)在平面直角坐标系中,已知圆,点P在圆上,过点P作x轴的垂线,垂足为是的中点,当P在圆M上运动时N形成的轨迹为C(1)求C的轨迹方程;(2)若点,试问在x轴上是否存在点M,使得过点M的动直线交C于两点时,恒有?若存在,求出点M的坐标;若不存在,请说明理由22.(10分)已知圆M:的圆心为M,圆N:的圆心为N,一动圆与圆N内切,与圆M外切,动圆的圆心E的轨迹为曲线C(1)求曲线C的方程;(2)已知点,直线l与曲线C交于A,B两点,且,直线l是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由正弦定理得出,再由余弦定理得出,从而判断为钝角得出的形状.【详解】因为,所以,所以,所以的形状为钝角三角形.故选:C2、B【解析】取x=4,得出命题p是假命题,由对数的运算得出命题q是假命题,再判断选项.【详解】命题p:∀x>2,x2>2x,是假命题,例如取x=4,则42=24;命题q:∃x0∈R,ln(x02+1)<0,是假命题,∵∀x∈R,ln(x2+1)≥0.则下列命题是真命题的是.故选:B.3、B【解析】首先地推公式变形,得,,求得数列的通项公式后,再解不等式.【详解】因为,两边取倒数,得,整理为:,,所以数列是首项为1,公差为4的等差数列,,,因为,即,得,解得:,,所以的最大值是7.故选:B4、A【解析】由,结合基本不等式可得,由此可得,由此说明“”是“”的充分条件,再通过举反例说明“”不是“”的必要条件,由此确定正确选项.【详解】∵,∴(当且仅当时等号成立),(当且仅当时等号成立),∴(当且仅当时等号成立),若,则,∴,所以“”是“”的充分条件,当时,,此时,∴“”不是“”的必要条件,∴“”是“”的充分不必要条件,故选:A.5、B【解析】根据古典概型概率计算公式,计算出所求的概率.【详解】依题有,算盘所表示的数可能有:17,26,8,35,62,71,80,53,其中是质数的有:17,71,53,故所求事件的概率为故选:B6、B【解析】设圆锥的母线长为R,底面半径长为r,由题可知圆锥的轴截面是等边三角形,根据体积公式计算可得,利用扇形的面积公式计算即可求得结果.【详解】如图,设圆锥的母线长为R,底面半径长为r,由题可知圆锥的轴截面是等边三角形,所以,圆锥的体积,解得,所以该圆锥的侧面积为.故选:B7、C【解析】设是界限上的一点,则,即,再根据双曲线的定义即可得出答案.【详解】解:设是界限上的一点,则,所以,即,在中,,所以点的轨迹为双曲线,即该界线所在曲线为双曲线.故选:C.8、D【解析】设等比数列公比为q,根据给定条件求出即可计算作答.【详解】等比数列公比为q,由得:,即,而,解得,所以.故选:D9、D【解析】求出函数的导数,问题转化为在有解,进而求函数的最值,即可求出的范围.【详解】∵,∴,若在区间内存在单调递增区间,则有解,故,令,则在单调递增,,故.故选:D.10、A【解析】根据双曲线渐近线方程设出方程,再由其过的点即可求解.【详解】渐近线方程是,设双曲线方程为,又因为双曲线经过点,所以有,所以双曲线方程为,化为标准方程为.故选:A11、D【解析】依题意可得为的重心,由三角形重心的性质可知,由中位线定理可知,再利用向量的加法运算法则即可求出结果【详解】解:依题意可得为的重心,,,分别为边,和的中点,,,故选:D12、B【解析】直接利用点到直线的距离公式得到答案.【详解】,答案为B【点睛】本题考查了点到直线的距离公式,属于简单题.二、填空题:本题共4小题,每小题5分,共20分。13、,##,【解析】由①②结合正弦定理可求出,但是角不唯一,故所选条件中不能同时有①②,只能是①③④或②③④,若选①③④,结合余弦定理可求,若选②③④,结合正弦定理即可求解【详解】由①②结合正弦定理,所以,此时角不唯一,所以故所选条件中不能同时有①②,所以只能是①③④或②③④,若选①③④,即,,,由余弦定理可得,解得,若选②③④,即,,,因为,,所以,由正弦定理得,,故答案为:,14、【解析】利用椭圆、双曲线的定义以及余弦定理找到的关系,然后利用三角换元求最值即可.【详解】解析:设椭圆的长半轴为a,双曲线的实半轴为,半焦距为c,设,,,因为,所以由余弦定理可得,①在椭圆中,,①化简为,即,②在双曲线中,,①化简为,即,③联立②③得,,即,记,,,则,当且仅当,即,时取等号故答案为:.15、【解析】作图,考虑底面是正三角形,按照线面夹角的定义构造直角三角形即可.【详解】依题意,作图如下,取的中点G,连结,∵是正三角形,∴,,又∵是正三棱柱,∴底面,∴,即平面,,与平面的夹角=,在中,,故答案为:.16、1【解析】根据向量共面,可设,先求解出的值,则的值可求.【详解】因为,,共面且,不共线,所以可设,所以,所以,所以,所以,故答案为:1.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2);(3).【解析】(1)由可得数列是等比数列,即可求得,由得数列是等差数列,即可求得.(2)由(1)可得,再利用错位相减法求和即得.(3)将问题等价转化为对任意恒成立,构造数列并判断其单调性,即可求解作答.【小问1详解】数列的前项和为,,,当时,,则,而当时,,即得,因此,数列是以1为首项,3为公比的等比数列,则,数列中,,,则数列是等差数列,而,,即有公差,则,所以数列,的通项公式分别是:,.【小问2详解】由(1)知,,则,则有,两式相减得:,从而得,所以数列的前n项和.【小问3详解】由(1)知,,依题意得对任意恒成立,设,则,当,,为单调递减数列,当,,为单调递增数列,显然有,则当时,取得最大值,即最大值是,因此,,所以实数k取值范围是.【点睛】思路点睛:一般地,如果数列是等差数列,是等比数列,求数列的前n项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列的公比,然后作差求解18、(1)(2)(3)不存在,理由见解析【解析】(1)由题意,以点A为原点,方向分别为x轴、y轴与z轴的正方向,建立空间直角坐标系.,利用向量法求解异面直线成角即可.(2)先求出平面DEF的一个法向量,然后利用向量法求解点面距离.(3)设(),由可得关于的方程,从而得出答案.【小问1详解】由题意,以点A为原点,方向分别为x轴、y轴与z轴的正方向,建立空间直角坐标系.则,,,,故,,从而,所以异面直线AE与DF所成角的大小为.小问2详解】,设平面DEF的法向量为,则,即,取,得到平面DEF的一个法向量为.点A到平面DEF的距离为.【小问3详解】假设存在满足条件的点M,设(),则,从而.即,即,此方程无实数解,故不存在满足条件的点M.19、(1)(2)或【解析】(1)将圆的一般方程化为标准方程,求出圆心,代入直线方程即可求解.(2)设直线的方程为:,利用圆心到直线的距离即可求解.【小问1详解】圆的标准方程为:,所以,圆心为由圆心在直线上,得.所以,圆的方程为:【小问2详解】由题意可知直线的斜率存在,设直线的方程为:,即由于直线和圆相切,得解得:所以,直线方程为:或.20、(1)(2)【解析】(1)由条件可得,,然后可得答案;(2)设直线的方程为,,联立直线与椭圆的方程消元,然后算出中点的坐标,然后可得线段的垂直平分线方程,然后可得,然后可求出答案.【小问1详解】因为椭圆的一个焦点是,且离心率所以,,所以所以椭圆的方程为【小问2详解】显然直线的斜率不为0,设直线的方程为,联立可得,所以所以中点的纵坐标为,横坐标为所以线段的垂直平分线方程为令,可得当时,当时,,因为,所以综上:21、(1);(2)不存在,理由见解析.【解析】(1)设,根据中点坐标公式用N的坐标表示P的坐标,将P的坐标代入圆M的方程化简即可得N的轨迹方程;(2)假设存在,设M为(m,0),设直线l斜率为k,表示其方程,l方程和椭圆方程联立,根据韦达定理得根与系数关系,由,得,代入根与系数的关系求k与m关系即可判断.【小问1详解】设,因为N为的中点,,又P点在圆上,,即C轨迹方程为;【小问2详解】不存在满足条件的点M,理由如下:假设存在满足条件的点M,设点M的坐标为,直线的斜率为k,则直线的方程为,由消去y并整理,得,设,则由,得,即,将代入上式并化简,得将式代入上式,有,解得,而,求得点M在椭圆外,若与椭圆无交点不满足条件,所以不存在这样的点M【点睛】本题关键是由得,将几何关系转化为代数关系进行计算.22、(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度建筑工地施工现场绿化养护合同标准
- 2025年度工业地皮买卖合同风险评估与控制服务协议
- 金华浙江金华市婺城区三江街道社区卫生服务中心招聘工作人员笔试历年参考题库附带答案详解
- 金华浙江金华义乌市中心医院基建总务科非编人员招聘笔试历年参考题库附带答案详解
- 重庆2025年重庆文理学院招聘39人笔试历年参考题库附带答案详解
- 漯河2024年河南共青团漯河市委所属事业单位引进高层次人才笔试历年参考题库附带答案详解
- 淄博2024年山东淄博机电工程学校招聘教师笔试历年参考题库附带答案详解
- 汕尾2025年广东汕尾陆河县第一批城镇公益性岗位招聘笔试历年参考题库附带答案详解
- 杭州浙江杭州市上城区行政审批服务管理办公室编外人员招聘笔试历年参考题库附带答案详解
- 2025年中国企业管理软件市场调查研究报告
- 布草类送洗记录表
- 三年级数学口算题300道 (可直接打印)
- 益生芽孢杆菌体外抑菌活性及耐药性研究
- 2023数联网(DSSN)白皮书
- 消防设施操作和维护保养规程
- 反面典型案例剖析材料范文(通用6篇)
- 社区养老驿站运营方案模版
- 铁道概论(高职)PPT完整全套教学课件
- 餐饮行业品牌介绍商务宣传PPT模板
- 关于中小企业人才流失的调查分析报告毕业论文
- 教科版五年级下册科学同步练习全册
评论
0/150
提交评论