




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省景县梁集中学2025届高二上数学期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.命题:,的否定为()A., B.不存在,C., D.,2.与圆和圆都外切的圆的圆心在()A.一个圆上 B.一个椭圆上C.双曲线的一支上 D.一条抛物线上3.已知抛物线,过抛物线的焦点作轴的垂线,与抛物线交于、两点,点的坐标为,且为直角三角形,则以直线为准线的抛物线的标准方程为()A. B.C. D.4.已知是虚数单位,若,则复数z的虚部为()A.3 B.-3iC.-3 D.3i5.已知抛物线的焦点为,点为抛物线上一点,点,则的最小值为()A. B.2C. D.36.已知点为双曲线的左顶点,点和点在双曲线的右分支上,是等边三角形,则的面积是A. B.C. D.7.从集合{2,3,4,5}中随机抽取一个数m,从集合{1,3,5}中随机抽取一个数n,则向量=(m,n)与向量=(1,-1)垂直的概率为()A. B.C. D.8.是椭圆的焦点,点在椭圆上,点到的距离为1,则到的距离为()A.3 B.4C.5 D.69.设曲线在点处的切线与x轴、y轴分别交于A,B两点,O为坐标原点,则的面积等于()A.1 B.2C.4 D.610.设A=37+·35+·33+·3,B=·36+·34+·32+1,则A-B的值为()A.128 B.129C.47 D.011.设是函数的导函数,的图象如图所示,则的图象最有可能的是()A. B.C. D.12.已知平面的一个法向量为,则x轴与平面所成角的大小为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若x,y满足约束条件,则的最小值为___________.14.若等比数列满足,则的前n项和____________15.已知抛物线方程为,则其焦点坐标为__________16.已知数列满足,,则_____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆,离心率为,椭圆上任一点满足(1)求椭圆的方程;(2)若动直线与椭圆相交于、两点,若坐标原点总在以为直径的圆外时,求的取值范围.18.(12分)如图,正方体的棱长为2,点为的中点.(1)求直线与平面所成角的正弦值;(2)求点到平面的距离.19.(12分)已知直线,以点为圆心的圆C与直线l相切(1)求圆C的标方程;(2)过点的直线交圆C于A,B两点,且,求的方程20.(12分)已知函数(1)讨论的单调性;(2)当时,证明21.(12分)如图,已知矩形ABCD所在平面外一点P,平面ABCD,E、F分别是AB、PC的中点求证:(1)共面;(2)求证:22.(10分)某工厂为了解甲、乙两条生产线所生产产品的质量,分别从甲、乙两条生产线生产的产品中各随机抽取了1000件产品,并对所抽取产品的某一质量指数进行检测,根据检测结果按分组,得到如图所示的频率分布直方图,若该工厂认定产品的质量指数不低于6为优良级产品,产品的质量指数在内时为优等品.(1)用统计有关知识判断甲、乙两条生产线所生产产品的质量哪一条更好,并说明理由(同一组中的数据用该组区间的中点值作代表);(2)用分层抽样的方法从该工厂样品的优等品中抽取6件产品,在这6件产品中随机抽取2件,求抽取到的2件产品都是甲生产线生产的概率.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】含有量词的命题的否定方法:先改变量词,然后再否定结论即可【详解】解:命题:,的否定为:,故选:D2、C【解析】设动圆的半径为,然后根据动圆与两圆都外切得,再两式相减消去参数,则满足双曲线的定义,即可求解.【详解】设动圆的圆心为,半径为,而圆的圆心为,半径为1;圆的圆心为,半径为2依题意得,则,所以点的轨迹是双曲线的一支故选:C3、B【解析】设点位于第一象限,求得直线的方程,可得出点的坐标,由抛物线的对称性可得出,进而可得出直线的斜率为,利用斜率公式求得的值,由此可得出以直线为准线的抛物线的标准方程.【详解】设点位于第一象限,直线的方程为,联立,可得,所以,点.为等腰直角三角形,由抛物线的对称性可得出,则直线的斜率为,即,解得.因此,以直线为准线的抛物线的标准方程为.故选:B.【点睛】本题考查抛物线标准方程的求解,考查计算能力,属于中等题.4、C【解析】由复数的除法运算可得答案.【详解】由题得,所以复数z的虚部为-3.故选:C.5、D【解析】求出抛物线C的准线l的方程,过A作l的垂线段,结合几何意义及抛物线定义即可得解.【详解】抛物线的准线l:,显然点A在抛物线C内,过A作AM⊥l于M,交抛物线C于P,如图,在抛物线C上任取不同于点P的点,过作于点N,连PF,AN,,由抛物线定义知,,于是得,即点P是过A作准线l的垂线与抛物线C的交点时,取最小值,所以的最小值为3.故选:D6、C【解析】设点在轴上方,由是等边三角形得直线斜率.又直线过点,故方程为.代入双曲线方程,得点的坐标为.同理可得,点的坐标为.故的面积为,选C.7、A【解析】根据分步计数乘法原理求得所有的)共有12个,满足两个向量垂直的共有2个,利用古典概型公式可得结果.【详解】集合{2,3,4,5}中随机抽取一个数,有4种方法;从集合{1,3,5}中随机抽取一个数,有3种方法,所以,所有的共有个,由向量与向量垂直,可得,即,故满足向量与向量垂直的共有2个:,所以向量与向量垂直的概率为,故选A.【点睛】本题主要考查分步计数乘法原理的应用、向量垂直的性质以及古典概型概率公式的应用,属于中档题.在解古典概型概率题时,首先求出样本空间中基本事件的总数,其次求出概率事件中含有多少个基本事件,然后根据公式求得概率.8、C【解析】利用椭圆的定义直接求解【详解】由题意得,得,因为,,所以,故选:C9、C【解析】求出原函数的导函数,得到函数在处的导数值,写出切线方程,分别求得切线在两坐标轴上的坐标,再由三角形面积公式求解【详解】由,得,,又切线过点,曲线在点处的切线方程为,取,得,取,得的面积等于故选:C10、A【解析】先化简A-B,发现其结果为二项式展开式,然后计算即可【详解】A-B=37-·36+·35-·34+·33-·32+·3-1=故选A.【点睛】本题主要考查了二项式定理的运用,关键是通过化简能够发现其结果在形式上满足二项式展开式,然后计算出结果,属于基础题11、C【解析】利用导函数的图象,判断导函数的符号,得到函数的单调性以及函数的极值点,然后判断选项即可【详解】解:由题意可知:和时,,函数是增函数,时,,函数是减函数;是函数的极大值点,是函数的极小值点;所以函数的图象只能是故选:C12、C【解析】依题意可得轴的方向向量可以为,再利用空间向量法求出线面角的正弦值,即可得解;【详解】解:依题意轴的方向向量可以为,设x轴与平面所成角为,则,因为,所以,故选:C二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】作出可行域,进而根据z的几何意义求得答案.【详解】如图,作出可行域,由z的几何意义可知当过点B时取得最小值.联立,则最小值为.故答案为:.14、##【解析】由已知及等比数列的通项公式得到首项和公比,再利用前n项和公式计算即可.【详解】设等比数列的公比为,由已知,得,解得,所以.故答案为:15、【解析】先将抛物线的方程转化为标准方程的形式,即可判断抛物线的焦点坐标为,从而解得答案.【详解】解:因为抛物线方程为,即,所以,,所以抛物线的焦点坐标为,故答案为:.16、【解析】由题设可得,应用累加法有,结合已知即可求.【详解】由题设,,所以,又,所以.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】(1)由已知计算可得即可得出方程.(2)由已知可得联立方程,结合韦达定理计算即可得出结果.【小问1详解】依题得解得:椭圆的方程为.【小问2详解】由已知动直线与椭圆相交于、,设联立得:解得:,即:或(*)坐标原点总在以为直径的圆外则:,即将(*)代入此式,解得:,即或或18、(1)(2)【解析】(1)建立空间直角坐标系,求出平面的一个法向量及,利用向量的夹角公式即可得解;(2)直接利用向量公式求解即可【小问1详解】解:以点作坐标原点,建立如图所示的空间直角坐标系,则,0,,,2,,,0,,,0,,设平面的一个法向量为,又,则,则可取,又,设直线与平面的夹角为,则,直线与平面的正弦值为;【小问2详解】解:因为所以点到平面的距离为,点到平面的距离为19、(1)(2)或【解析】(1)根据点到直线的距离公式求出半径,即可得到圆C的标方程;(2)根据弦长公式可求出圆心C到直线的距离,再根据点到直线的距离公式结合分类讨论思想即可求出【小问1详解】设圆C的半径为r,∵C与l相切,∴,∴圆C的标准方程为【小问2详解】由可得圆心C到直线的距离∴当的斜率不存在时,其方程为,此时圆心到的距离为3,符合条件;当的斜率存在时,设,圆心C到直线的距离,解得,此时的方程为,即综上,的方程为或20、(1)答案见解析(2)证明见解析【解析】(1)求导得,进而分和两种情况讨论求解即可;(2)根据题意证明,进而令,再结合(1)得,研究函数的性质得,进而得时,,即不等式成立.【小问1详解】解:函数的定义域为,,∴当时,在上恒成立,故函数在区间上单调递增;当时,由得,由得,即函数在区间上单调递增,在上单调递减;综上,当时,在区间上单调递增;当时,在区间上单调递增,在上单调递减;【小问2详解】证明:因为时,证明,只需证明,由(1)知,当时,函数在区间上单调递增,在上单调递减;所以.令,则,所以当时,,函数单调递减;当时,,函数单调递增,所以.所以时,,所以当时,21、(1)详见解析;(2)详见解析.【解析】(1)以为原点,为轴,为轴,为轴,建立空间直角坐标系,设,,,求出,,,,0,,,,,从而,由此能证明共面(2)求出,0,,,,,由,能证明【详解】证明:如图,以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,设,,,则0,,0,,2b,,2b,,0,,为AB的中点,F为PC的中点,0,,b,,b,,,2b,,共面.(2),【点睛】本题考查三个向量共面的证明,考查两直线垂直的证明,是基础题22、(1)甲更好,详细见解析(2)【解析】(1)根据频率分布直方图计算甲、乙两条生产线所生产产品的质量指数的平均数,比较大小即可得答案;(2)由题意可知,甲、乙生产线的样品中优等品件数,利用分层抽样可得从甲生产线的样品中抽取的优等品有件件,记为,从乙生产线的样品中抽取的优等品有件,记为;列出抽取到的2件产品的所有基本事件,根据古典概型计算即可.【小问1详解】解:甲生产线所生产产品的质量指数的平均数为:=3×0.05×2+5×0.15×2+7×0.2×2+9×0.1×2=6.4;乙生产线所生产产品的质量指数的平均数为:=3×0.15×2+5×0.1×2+7×0.2×2+9×0.05×2=5.6因为,所以甲生产线生产产品质量的平均水平高于乙生产线生产产品质量的平均水平,故甲生产线所生产产品的质量更好.【小问2详解】由题意可知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 六一慈善活动策划方案
- 六一汉唐活动方案
- 六一活动健美操活动方案
- 六一活动合唱活动方案
- 六一班活动优惠活动方案
- 六一纳新活动方案
- 六一节教学活动方案
- 六一蛋糕店活动策划方案
- 六十校庆活动策划方案
- 六年级班会课活动方案
- 预拌混凝土及原材料检测理论考试题库(含答案)
- 3~6岁儿童早期运动游戏干预课程设计研究-基于SKIP的研究证据
- 《植物生理学》课件第三章+植物的光合作用
- 游泳馆网架翻新施工组织方案设计
- 3.1 定格青春——向艺术家学创作 课件-2021-2022学年高中美术人美版(2019)选修绘画
- 有机化学所有的命名--超全.
- 引水罐的设计计算
- 三年级译林版英语下学期按要求写句子专项强化练习题
- 电缆接线工艺设计规范流程
- 中医经络减肥课件
- 5WHY分析法培训
评论
0/150
提交评论