陕西省西安高新唐南中学2025届高一数学第一学期期末质量跟踪监视模拟试题含解析_第1页
陕西省西安高新唐南中学2025届高一数学第一学期期末质量跟踪监视模拟试题含解析_第2页
陕西省西安高新唐南中学2025届高一数学第一学期期末质量跟踪监视模拟试题含解析_第3页
陕西省西安高新唐南中学2025届高一数学第一学期期末质量跟踪监视模拟试题含解析_第4页
陕西省西安高新唐南中学2025届高一数学第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省西安高新唐南中学2025届高一数学第一学期期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数f(x)=sin(x+)+cos(x-)的最大值是()A. B.C.1 D.2.设则下列说法正确的是()A.方程无解 B.C.奇函数 D.3.当时,在同一平面直角坐标系中,函数与的图象可能为A. B.C. D.4.已知函数(,,)的图象如图所示,则()A.B.对于任意,,且,都有C.,都有D.,使得5.若,则的可能值为()A.0 B.0,1C.0,2 D.0,1,26.定义:对于一个定义域为的函数,若存在两条距离为的直线和,使得时,恒有,则称在内有一个宽度为的通道.下列函数:①;②;③;④.其中有一个宽度为2的通道的函数的序号为A.①② B.②③C.②④ D.②③④7.A B.C.1 D.8.“是第一或第二象限角”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.幂函数y=f(x)的图象过点(4,2),则幂函数y=f(x)的图象是A. B.C. D.10.如图,在等腰梯形中,,分别是底边的中点,把四边形沿直线折起使得平面平面.若动点平面,设与平面所成的角分别为(均不为0).若,则动点的轨迹围成的图形的面积为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知A,B,C为的内角.(1)若,求的取值范围;(2)求证:;(3)设,且,,,求证:12.函数零点的个数为______.13.函数的最大值是____________.14.若函数关于对称,则常数的最大负值为________15.已知两点,,以线段为直径的圆经过原点,则该圆的标准方程为____________.16.若,,.,则a,b,c的大小关系用“”表示为________________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(为常数)是奇函数(1)求的值;(2)判断函数在上的单调性,并予以证明18.已知,且的最小正周期为.(1)求;(2)当时,求函数的最大值和最小值并求相应的值.19.已知函数(1)当时,解方程;(2)当时,恒成立,求的取值范围20.在①,,②,,两个条件中任选一个,补充到下面问题的横线中,并求解该问题.已知函数___________(填序号即可).(1)求函数的解析式及定义域;(2)解不等式.21.已知直线(1)求直线的斜率;(2)若直线m与平行,且过点,求m的方程.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】先利用三角恒等变化公式将函数化成形式,然后直接得出最值.【详解】整理得,利用辅助角公式得,所以函数的最大值为,故选A.【点睛】三角函数求最值或者求值域一定要先将函数化成的形函数.2、B【解析】根据函数的定义逐个分析判断【详解】对于A,当为有理数时,由,得,所以A错误,对于B,因为为无理数,所以,所以B正确,对于C,当为有理数时,也为有理数,所以,当为无理数时,也为无理数,所以,所以为偶函数,所以C错误,对于D,因为,所以,所以D错误,故选:B3、C【解析】当时,单调递增,单调递减故选4、C【解析】根据给定函数图象求出函数的解析式,再逐一分析各个选项即可判断作答.【详解】观察函数的图象得:,令的周期为,则,即,,由,且得:,于是有,对于A,,A不正确;对于B,取且,满足,,且,而,,此时,B不正确;对于C,,,,即,都有,C正确;对于D,由得:,解得:,令,解得与矛盾,D不正确.故选:C5、C【解析】根据,分,,讨论求解.【详解】因为,当时,集合为,不成立;当时,集合为,成立;当时,则(舍去)或,当时,集合为故选:C6、D【解析】②③可由作图所得,④作图可知有一个宽度为1的通道,由定义可知比1大的通道都存在.7、A【解析】由题意可得:本题选择A选项.8、A【解析】利用充分必要条件的定义判断.【详解】若角的终边在第一或第二象限,则,反过来,若,则的终边可能在第一或第二象限,也有可能在轴正半轴上.所以“是第一或第二象限角”是“”的充分不必要条件.故选:A9、C【解析】设出函数的解析式,根据幂函数y=f(x)的图象过点(4,2),构造方程求出指数的值,再结合函数的解析式研究其性质即可得到图象【详解】设幂函数的解析式为y=xa,∵幂函数y=f(x)的图象过点(4,2),∴2=4a,解得a=∴,其定义域为[0,+∞),且是增函数,当0<x<1时,其图象在直线y=x的上方.对照选项故选C【点睛】本题考查的知识点是函数解析式的求解及幂函数图象及其与指数的关系,其中对于已经知道函数类型求解析式的问题,要使用待定系数法10、D【解析】由题意,PE=BEcotθ1,PF=CFcotθ2,∵BE=CF,θ1=θ2,∴PE=PF以EF所在直线为x轴,EF的垂直平分线为y轴建立坐标系,设E(﹣,0),F(,0),P(x,y),则(x+)2+y2=[(x﹣)2+y2],∴3x2+3y2+5ax+a2=0,即(x+a)2+y2=a2,轨迹为圆,面积为故答案选:D点睛:这个题考查的是立体几何中点的轨迹问题,在求动点轨迹问题中常用的方法有:建立坐标系,将立体问题平面化,用方程的形式体现轨迹;或者根据几何意义得到轨迹,但是注意得到轨迹后,一些特殊点是否需要去掉二、填空题:本大题共6小题,每小题5分,共30分。11、(1)(2)证明见解析(3)证明见解析【解析】(1)根据两角和的正切公式及均值不等式求解;(2)先证明,再由不等式证明即可;(3)找出不等式的等价条件,换元后再根据函数的单调性构造不等式,利用不等式性质即可得证.【小问1详解】,为锐角,,,解得,当且仅当时,等号成立,即.【小问2详解】在中,,,,.【小问3详解】由(2)知,令,原不等式等价为,在上为增函数,,,同理可得,,,,故不等式成立,问题得证.【点睛】本题第3问的证明需要用到,换元后转换为,再构造不等式是证明的关键,本题的难点就在利用函数单调性构造出不等式.12、2【解析】将函数的零点的个数转化为与的图象的交点个数,在同一直角坐标系中画出图象即可得答案.【详解】解:令,这,则函数的零点的个数即为与的图象的交点个数,如图:由图象可知,与的图象的交点个数为2个,即函数的零点的个数为2.故答案为:2.【点睛】本题考查函数零点个数问题,可转化为函数图象交点个数,考查学生的作图能力和转化能力,是基础题.13、【解析】把函数化为的形式,然后结合辅助角公式可得【详解】由已知,令,,,则,所以故答案为:14、【解析】根据函数的对称性,利用,建立方程进行求解即可【详解】若关于对称,则,即,即,则,则,,当时,,故答案为:15、【解析】由以线段为直径的圆经过原点,则可得,求得参数的值,然后由中点坐标公式求所求圆的圆心,用两点距离公式求所求圆的直径,再运算即可.【详解】解:由题意有,,又以线段为直径的圆经过原点,则,则,解得,即,则的中点坐标为,即为,又,即该圆的标准方程为,故答案为.【点睛】本题考查了圆的性质及以两定点为直径的圆的方程的求法,重点考查了运算能力,属基础题.16、cab【解析】根据指数函数的单调性以及对数函数的单调性分别判断出的取值范围,从而可得结果【详解】,即;,即;,即,综上可得,故答案为:.【点睛】方法点睛:解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)1;(2)函数在上是减函数,证明见详解.【解析】(1)利用,化简后可求得的值.(2)利用单调性的定义,令,计算判断出在上函数为减函数.再根据复合函数同增异减,可判断得在上的单调性.【详解】(1)∵是奇函数,∴,即,即,解得或(舍去),故的值为1(2)函数在上是减函数证明:由(1)知,设,任取,∴,∵,,,∴,∴在上为减函数,又∵函数在上为增函数,∴函数在上为减函数【点睛】本题考查由对数型函数的奇偶性求参数值,以及利用单调性定义证明函数单调性,属综合中档题.18、(1);(2)时,,时,.【解析】(1)化简即得函数,再根据函数的周期求出,即得解;(2)由题得,再根据三角函数的图像和性质即得解.【详解】解:(1)函数,因为,所以,解得,所以(2)当时,,当,即时,,当,即时,,所以,时,,时,.19、(1)(2)【解析】(1)当时,,求出,把原方程转化为指数方程,再利用换元法求解,即可求出结果;(2)⇔|a+1|≥2x−12x,令,,则对任意恒成立,利用函数的单调性求出的最大值,再求解绝对值不等式可得实数的取值范围【小问1详解】解:当时,,原方程等价于且,,即,且,,所以,且令,则原方程化为,整理得,解得或,即或(舍去),所以.故原方程的解为【小问2详解】解:因为,所以,即令,因为,所以,则恒成立,即上恒成立,令函数,因为函数与在上单调递增,所以在上单调递增因为,,所以,则,所以,解得或.故的取值范围是20、(1)条件选择见解析,答案见解析;(2)条件选择见解析,答案见解析.【解析】(1)根据所选方案,直接求出的解析式,根据对数的真数大于零可求得函数的定义域;(2)根据所选方案,结合二次不等式和对数函数的单调性可得出原不等式的解集.【小问1详解】解:若选①,,由,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论