




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届贵州省百校大联考数学高二上期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.圆的圆心坐标与半径分别是()A. B.C. D.2.直线被圆截得的弦长为()A.1 B.C.2 D.33.若存在,使得不等式成立,则实数k的取值范围为()A. B.C. D.4.某班级从5名同学中挑出2名同学进行大扫除,若小王和小张在这5名同学之中,则小王和小张都没有被挑出的概率为()A. B.C. D.5.已知函数在区间有且仅有2个极值点,则m的取值范围是()A. B.C. D.6.若椭圆对称轴是坐标轴,长轴长为,焦距为,则椭圆的方程()A. B.C.或 D.以上都不对7.等比数列的第4项与第6项分别为12和48,则公比的值为()A. B.2C.或2 D.或8.甲、乙两组数的数据如茎叶图所示,则甲、乙的平均数、方差、极差及中位数中相同的是()A.极差 B.方差C.平均数 D.中位数9.已知双曲线的右焦点为,渐近线为,,过的直线与垂直,且交于点,交于点,若,则双曲线的离心率为()A. B.C.2 D.10.已知f(x)为R上的可导函数,其导函数为,且对于任意的x∈R,均有,则()A.e-2021f(-2021)>f(0),e2021f(2021)<f(0) B.e-2021f(-2021)<f(0),e2021f(2021)<f(0)C.e-2021f(-2021)>f(0),e2021f(2021)>f(0) D.e-2021f(-2021)<f(0),e2021f(2021)>f(0)11.将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A.60种 B.120种C.240种 D.480种12.如图,在正方体中,点,分别是面对角线与的中点,若,,,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若椭圆的一个焦点为,则p的值为______14.已知椭圆,分别是椭圆的上、下顶点,是左顶点,为左焦点,直线与相交于点,则________15.已知数列满足,则其通项公式________16.长方体中,,已知点与三点共线且,则点到平面的距离为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆C的中心在原点,焦点在x轴上,焦距为2,离心率为(1)求椭圆C的方程;(2)设直线l经过点M(0,1),且与椭圆C交于A,B两点,若,求直线l的方程18.(12分)已知椭圆的左、右焦点分别为,过右焦点作直线交于,其中的周长为的离心率为.(1)求的方程;(2)已知的重心为,设和的面积比为,求实数的取值范围.19.(12分)已知函数.(1)讨论的单调性;(2)任意,恒成立,求的取值范围.20.(12分)在平面直角坐标系中,双曲线的左、右两个焦点为、,动点P满足(1)求动点P的轨迹E的方程;(2)设过且不垂直于坐标轴的动直线l交轨迹E于A、B两点,问:线段上是否存在一点D,使得以DA、DB为邻边的平行四边形为菱形?若存在,请给出证明:若不存在,请说明理由21.(12分)分别求满足下列条件的曲线方程(1)以椭圆的短轴顶点为焦点,且离心率为的椭圆方程;(2)过点,且渐近线方程为的双曲线的标准方程22.(10分)在平面直角坐标系中,过点且倾斜角为的直线与曲线(为参数)交于两点.(1)将曲线的参数方程转化为普通方程;(2)求的长.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】将圆的一般方程化为标准方程,即可得答案.【详解】由题可知,圆的标准方程为,所以圆心为,半径为3,故选.2、C【解析】利用直线和圆相交所得的弦长公式直接计算即可.【详解】由题意可得圆的圆心为,半径,则圆心到直线的距离,所以由直线和圆相交所得的弦长公式可得弦长为:.故选:C.3、C【解析】根据题意和一元二次不等式能成立可得对于,成立,令,利用导数讨论函数的单调性,即可求出.【详解】存在,不等式成立,则,能成立,即对于,成立,令,,则,令,所以当,单调递增,当,单调递减,又,所以f(x)>-3,所以.故选:C4、B【解析】记另3名同学分别为a,b,c,应用列举法求古典概型的概率即可.【详解】记另3名同学分别为a,b,c,所以基本事件为,,(a,小王),(a,小张),,(b,小王),(b,小张),(c,小王),(c,小张),(小王,小张),共10种小王和小张都没有被挑出包括的基本事件为,,,共3种,综上,小王和小张都没有挑出的概率为故选:B.5、A【解析】根据导数的性质,结合余弦型函数的性质、极值的定义进行求解即可.【详解】由,,因为在区间有且仅有2个极值点,所以令,解得,因此有,故选:A6、C【解析】求得、、的值,由此可得出所求椭圆的方程.【详解】由题意可得,解得,,由于椭圆的对称轴是坐标轴,则该椭圆的方程为或.故选:C.7、C【解析】根据等比数列的通项公式计算可得;详解】解:依题意、,所以,即,所以;故选:C8、C【解析】根据茎叶图中数据的波动情况,可直接判断方差不同;根据茎叶图中的数据,分别计算极差、中位数、平均数,即可得出结果.【详解】由茎叶图可得:甲的数据更集中,乙的数据较分散,所以甲与乙的方差不同;甲的极差为;乙的极差为,所以甲与乙的极差不同;甲的中位数为,乙的中位数为,所以中位数不同;甲的平均数为,乙的平均数为,所以甲、乙的平均数相同;故选:C.9、C【解析】由题设易知是的中垂线,进而可得,结合双曲线参数关系及离心率公式求双曲线的离心率即可.【详解】由题意,是的中垂线,故,由对称性得,则,故,∴.故选:C.10、D【解析】通过构造函数法,结合导数确定正确答案.【详解】构造函数,所以在上递增,所以,即.故选:D11、C【解析】先确定有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,然后利用组合,排列,乘法原理求得.【详解】根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有种不同的分配方案,故选:C.【点睛】本题考查排列组合的应用问题,属基础题,关键是首先确定人数的分配情况,然后利用先选后排思想求解.12、D【解析】由空间向量运算法则得,利用向量的线性运算求出结果.【详解】因为点,分别是面对角线与的中点,,,,所以故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】利用椭圆标准方程概念求解【详解】因为焦点为,所以焦点在y轴上,所以故答案:314、##【解析】先求出顶点和焦点坐标,求出直线直线与的斜率,利用到角公式求出的正切值,进而求出正弦值.【详解】由可得:,所以,,,,故,由到角公式得:,其中,所以.故答案为:15、【解析】利用累加法即可求出数列的通项公式.【详解】因为,所以,所以,,,…,,把以上个式子相加,得,即,所以.故答案为:.16、【解析】利用坐标法,利用向量共线及垂直的坐标表示可求,即求.【详解】如图建立空间直角坐标系,则,因为点与三点共线且,,设,即,∴,∴,∴,即,∴点到平面的距离为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或【解析】(1)根据椭圆的焦距为2,离心率为,求出,,即可求椭圆的方程;(2)设直线方程为,代入椭圆方程,由得,利用韦达定理,化简可得,求出,即可求直线的方程.试题解析:(1)设椭圆方程为,因为,所以,所求椭圆方程为.(2)由题得直线l的斜率存在,设直线l方程为y=kx+1,则由得,且.设,则由得,又,所以消去得,解得,,所以直线的方程为,即或.18、(1)(2)【解析】(1)已知焦点弦三角形的周长,以及离心率求椭圆方程,待定系数直接求解即可.(2)第一步设点设直线,第二步联立方程韦达定理,第三步条件转化,利用三角形等面积法,列方程,第四步利用韦达定理进行转化,计算即可.【小问1详解】因为的周长为,的离心率为,所以,,所以,,又,所以椭圆的方程为.【小问2详解】方法一:,,的面积为,的面积为,则,得,①设,与椭圆C方程联立,消去得,由韦达定理得,.令,②则,可得当时,当时,所以,又解得③由①②③得,解得.所以实数的取值范围是.方法二:同方法一可得的面积为,的面积为,则,得,①设,与椭圆C方程联立,消去得,由韦达定理得,.所以因为,所以解得②由①②解得.所以实数的取值范围是.19、(1)的递增区间为,递减区间为(2)【解析】(1)先求出函数的导数,令、解出对应的解集,结合定义域即可得到函数的单调区间;(2)将不等式转化为,令,利用导数讨论函数分别在、时的单调性,进而求出函数的最值,即可得出答案.【小问1详解】函数的定义域为,又当时,,当时,故的递增区间为,递减区间为.【小问2详解】,即,令,有,,若,在上恒成立.则在上为减函数,所以有若,由,可得,则在上增,所以在上存在使得,与题意不符合综上所述,.20、(1);(2)存在,理由见解析.【解析】(1)根据题意用定义法求解轨迹方程;(2)在第一问的基础上,设出直线l的方程,联立椭圆方程,用韦达定理表达出两根之和,两根之积,求出直线l的垂直平分线,从而得到D点坐标,证明出结论.【小问1详解】由题意得:,所以,,而,故动点P的轨迹E的方程为以点、为焦点的椭圆方程,由得:,,所以动点P的轨迹E的方程为;【小问2详解】存,理由如下:显然,直线l的斜率存在,设为,联立椭圆方程得:,设,,则,,要想以DA、DB为邻边的平行四边形为菱形,则点D为AB垂直平分线上一点,其中,,则,故AB的中点坐标为,则AB的垂直平分线为:,令得:,且无论为何值,,点D在线段上,满足题意.21、(1)(2)【解析】(1)由题意得出的值后写椭圆方程(2)待定系数法设方程,由题意列方程求解【小问1详解】的短轴顶点为(0,-3),(0,3),
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中班健康活动打喷嚏课件
- 中班健康早餐有营养课件
- 中班健康教案莲山课件
- 中班健康吃水果课件
- 2025年智能消防设备安装与维护服务合同
- 2025版新型办公大楼租赁合同范本
- 2025版食品安全评价与技术服务合同
- 2025年idc机房租赁合同:高品质数据中心租赁及创新服务协议
- 叉车考试题及答案 百度
- 中旭企业培课件
- 2024年全国环保产业职业技能竞赛(工业废水处理工)考试题库(含答案)
- 房屋及相关设施零星维修项目环境保护管理体系与措施
- 2024汽车行业社媒营销趋势【微播易CAA中国广告协会】-2024-数字化
- 医院药房质量控制制度
- 《乌鲁木齐市国土空间总体规划(2021-2035年)》
- HJ 651-2013 矿山生态环境保护与恢复治理技术规范(试行)
- SY-T 5333-2023 钻井工程设计规范
- 冠脉介入进修汇报
- 叙事护理学智慧树知到期末考试答案章节答案2024年中国人民解放军海军军医大学
- 2024四川省南部县事业单位招聘45人历年公开引进高层次人才和急需紧缺人才笔试参考题库(共500题)答案详解版
- PDCA提高卧床患者踝泵运动的执行率
评论
0/150
提交评论