版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省非凡吉名校创联盟2025届数学高一上期末预测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某同学用“五点法”画函数在一个周期内的简图时,列表如下:0xy0200则的解析式为()A. B.C D.2.已知,则A. B.C. D.3.长方体的一个顶点上的三条棱长分别为3、4、5,且它的8个顶点都在同一个球面上,则这个球的表面积是()A. B.C. D.都不对4.已知函数与在下列区间内同为单调递增的是()A. B.C. D.5.的弧度数是()A. B.C. D.6.将化为弧度为A. B.C. D.7.设和两个集合,定义集合,且,如果,,那么A. B.C. D.8.非零向量,,若点关于所在直线的对称点为,则向量为A. B.C. D.9.不等式的解集为()A. B.C. D.10.直线l的方程为Ax+By+C=0,当,时,直线l必经过A.第一、二、三象限 B.第二、三、四象限C.第一、三、四象限 D.第一、二、四象限二、填空题:本大题共6小题,每小题5分,共30分。11.设偶函数的定义域为,函数在上为单调函数,则满足的所有的取值集合为______12.随机抽取100名年龄在[10,20),[20,30),…,[50,60)年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,则在[50,60)年龄段抽取的人数为______.13.已知扇形的圆心角为120°,半径为3,则扇形的面积是________.14.已知是定义在R上的奇函数,当时,,则当时,______15.设,则________.16.将函数的图象向左平移个单位长度后得到的图象,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数f(x)=lg(3+x)+lg(3-x)(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由18.某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:0050(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数的解析式;(Ⅱ)将图象上所有点向左平行移动个单位长度,得到的图象.若图象的一个对称中心为,求的最小值19.已知函数是定义在上的偶函数,且.(1)求实数的值,并证明;(2)用定义法证明函数在上增函数;(3)解关于的不等式.20.已知函数的部分图象如图所示.(1)求函数f(x)的解析式,并求出该函数的单调递增区间;(2)若,且,求的值.21.如图,四棱锥P-ABCD的底面为平行四边形,M为PC中点(1)求证:BA∥平面PCD;(2)求证:AP∥平面MBD
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由表格中的五点,由正弦型函数的性质可得、、求参数,即可写出的解析式.【详解】由表中数据知:且,则,∴,即,又,可得.∴.故选:D.2、D【解析】考点:同角间三角函数关系3、B【解析】由题意长方体的外接球的直径就是长方体的对角线,求出长方体的对角线,就是求出球的直径,然后求出球的表面积【详解】解:长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,所以长方体的对角线就是球的直径,长方体的对角线为:,所以球的半径为:;则这个球的表面积是:故选:4、D【解析】根据正余弦函数的单调性,即可得到结果.【详解】由正弦函数的单调性可知,函数在上单调递增;由余弦函数的单调性可知,函数在上单调递增;所以函数与在下列区间内同为单调递增的是.故选:D.5、C【解析】弧度,弧度,则弧度弧度,故选C.6、D【解析】根据角度制与弧度制的关系求解.【详解】因为,所以.故选:D.7、D【解析】根据的定义,可求出,,然后即可求出【详解】解:,;∴.故选D.【点睛】考查描述法的定义,指数函数的单调性,正弦函数的值域,属于基础题8、A【解析】如图由题意点B关于所在直线的对称点为B1,所以∠BOA=∠B1OA,所以又由平行四边形法则知:,且向量的方向与向量的方向相同,由数量积的概念向量在向量方向上的投影是OM=,设与向量方向相同的单位向量为:,所以向量=2=2=,所以=.故选A.点睛:本题利用平行四边形法则表示和向量,因为对称,所以借助数量积定义中的投影及单位向量即可表示出和向量,解题时要善于借助图像特征体现向量的工具作用.9、D【解析】化简不等式并求解即可.【详解】将不等式变形为,解此不等式得或.因此,不等式解集为故选:D【点睛】本题考查一元二次不等式解法,考查学生计算能力,属于基础题.10、A【解析】把直线方程化为斜截式,根据斜率以及直线在y轴上的截距的符号,判断直线在坐标系中的位置【详解】当A>0,B<0,C>0时,直线Ax+By+C=0,即y=﹣x﹣,故直线的斜率﹣>0,且直线在y轴上的截距﹣>0,故直线经过第一、二、三象限,故选A【点睛】本题主要考查根据直线的斜截式方程判断直线在坐标系中的位置,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】∵,又函数在上为单调函数∴=∴,或∴∴满足的所有的取值集合为故答案为12、3【解析】根据频率分布直方图,求得不小于40岁的人的频率及人数,再利用分层抽样的方法,即可求解,得到答案【详解】根据频率分布直方图,得样本中不小于40岁的人的频率是0.015×10+0.005×10=0.2,所以不小于40岁的人的频数是100×0.2=20;从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,在[50,60)年龄段抽取人数为【点睛】本题主要考查了频率分布直方图的应用,其中解答中熟记频率分布直方图的性质,以及频率分布直方图中概率的计算方法是解答的关键,着重考查了推理与运算能力,属于基础题13、【解析】先将角度转化成弧度制,再利用扇形面积公式计算即可.【详解】扇形的圆心角为120°,即,故扇形面积.故答案为:.14、【解析】根据奇函数的性质求解【详解】时,,是奇函数,此时故答案为:15、2【解析】先求出,再求的值即可【详解】解:由题意得,,所以,故答案为:216、0【解析】根据题意,可知将函数的图象向右平移个单位长度后得到,由函数图象的平移得出的解析式,即可得出的结果.【详解】解:由题意可知,将函数的图象向右平移个单位长度后得到,则,所以.故答案为:0.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)偶函数,理由详见解析【解析】(1)求定义域,通常就是求使函数式有意义的自变量取值集合,所以只要满足各项都有意义即可,对数型的函数求值域,关键求出真数部分的取值范围就可以了;(2)判断函数奇偶性,就是利用奇偶性定义判断即可试题解析:(1)由函数式可得又所以值域为(2)由(1)可知定义域关于原点对称所以原函数为偶函数考点:1.求复合函数的定义域、值域;2.用定义判断函数奇偶性18、(Ⅰ);(Ⅱ)【解析】(Ⅰ)根据表中已知数据,解得.数据补全如下表:00500且函数表达式为.(Ⅱ)由(Ⅰ)知,得因为对称中心为,令,解得,由于函数的图象关于点成中心对称,令,解得,.由可知,当时,取得最小值.考点:“五点法”画函数在某一个周期内的图象,三角函数的平移变换,三角函数的性质19、(1),证明见解析(2)证明见解析(3)【解析】(1)由偶函数性质求,由列方程求,再证明;(2)利用单调性定义证明函数的单调性;(3)利用函数的性质化简可求.【小问1详解】因为函数是定义在R上的偶函数∴,综上,从而【小问2详解】证明:因为设,所以又,∴所以∴在上为增函数;【小问3详解】∵.∵偶函数在上为增函数.在上为减函数∴20、(1)答案见解析;(2).【解析】(1)根据函数图象可得A,周期T,即可求出,再由图象过点即可求出,得到函数解析式,求出单调区间;(2)由求出,再由两角差的正弦公式直接计算即可.小问1详解】由图象可知,A=2,且,解得所以,因为,所以则,则仅当时,符合题意,所以,令,解得综上,解析式为,单调增区间为;【小问2详解】因为,所以,所以,又,所以所以.21、(1)见解析(2)见解析【解析】(1)根据平行四边形的性质可知,结合直线与平面平行的判定定理可得结论;(2)设,连接,由平行四边形的性质可知为中位线,从而得到,利用线面平行的判定定理,即可证出平面.【详解】证明(1)∵如图,四棱锥P-ABCD的底面为平行四边形,∴BC∥AD,又∵AD⊂平面PAD,BC⊄平面PAD,∴BC∥平面PAD;(2)设AC∩BD=H,连接MH,∵H为平行四边形ABCD对角线的交点,∴H为AC中点,又∵M为PC中点,∴MH为△PAC中位线,可得MH
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国地产绿化商业计划书
- 2024-2030年中国咸菜市场发展前景调研与投资策略分析报告
- 2024-2030年中国印花热熔胶融资商业计划书
- 2024年体育用品销售租赁合同
- 满洲里俄语职业学院《STEM课程教学与微课制作》2023-2024学年第一学期期末试卷
- 2024年儿童个性化教育服务聘请教师劳动合同模板3篇
- 2024年房屋中介居间协议2篇
- 漯河医学高等专科学校《画法几何与土建制图》2023-2024学年第一学期期末试卷
- 2025年铜川货运从业资格证模拟考试下载什么软件
- 2024年标准格式个人等额本息贷款合同版B版
- 当前台海局势分析课件
- 五金采购工作总结
- 苏教版三年级上册解决问题的策略应用题100题及答案
- 质量管理中的流程改进与优化
- 成长赛道-模板参考
- 室外晾衣棚施工方案
- 儿童健康管理服务总结分析报告
- 殡葬行业的风险分析
- 通信工程冬季施工安全培训
- 痛风病科普讲座课件
- 工作岗位风险评估报告
评论
0/150
提交评论