2025届上海市嘉定区外国语学校数学高二上期末检测模拟试题含解析_第1页
2025届上海市嘉定区外国语学校数学高二上期末检测模拟试题含解析_第2页
2025届上海市嘉定区外国语学校数学高二上期末检测模拟试题含解析_第3页
2025届上海市嘉定区外国语学校数学高二上期末检测模拟试题含解析_第4页
2025届上海市嘉定区外国语学校数学高二上期末检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届上海市嘉定区外国语学校数学高二上期末检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.甲、乙、丙、丁、戊共5名同学进行劳动技术比赛,决出第1名到第5名的名次.甲和乙去询问成绩,回答者对甲说:“很遗憾,你和乙都没有得到冠军.”对乙说:“你当然不会是最差的.”从这两个回答分析,5人的名次排列方式共有()种A.54 B.72C.96 D.1202.已知椭圆C1:+y2=1(m>1)与双曲线C2:–y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则A.m>n且e1e2>1 B.m>n且e1e2<1C.m<n且e1e2>1 D.m<n且e1e2<13.已知:,:,若是的充分不必要条件,则实数的取值范围是()A. B.C. D.4.函数为的导函数,令,则下列关系正确的是()A. B.C. D.5.双曲线的离心率是,则双曲线的渐近线方程是()A. B.C. D.6.已知双曲线的左、右焦点分别为,点A在双曲线上,且轴,若则双曲线的离心率等于()A. B.C.2 D.37.已知椭圆的中心为,一个焦点为,在上,若是正三角形,则的离心率为()A. B.C. D.8.已知为等腰直角三角形的直角顶点,以为旋转轴旋转一周得到几何体,是底面圆上的弦,为等边三角形,则异面直线与所成角的余弦值为()A. B.C. D.9.已知点,点关于原点对称点为,则()A. B.C. D.10.已知M、N为椭圆上关于短轴对称的两点,A、B分别为椭圆的上下顶点,设、分别为直线的斜率,则的最小值为()A. B.C. D.11.若直线过点(1,2),(4,2+),则此直线的倾斜角是()A.30° B.45°C.60° D.90°12.设,,,则下列不等式中一定成立的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若等比数列满足,则的前n项和____________14.若,则与向量同方向的单位向量的坐标为____________.15.设集合,把集合中的元素按从小到大依次排列,构成数列,求数列的前项和___16.已知球的半径为4,圆与圆为该球的两个小圆,为圆与圆的公共弦,,若,则两圆圆心的距离___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知命题p:“,”为假命题,命题q:“实数满足”.若是真命题,是假命题,求的取值范围18.(12分)自疫情爆发以来,由于党和国家对抗疫工作高度重视,在人民群众的不懈努力下,我国抗疫工作取得阶段性成功,国家经济很快得到复苏.在餐饮业恢复营业后,某快餐店统计了近天内每日接待的顾客人数,将前天的数据进行整理得到频率分布表和频率分布直方图.组别分组频数频率第组第组第组第组第组合计(1)求、、的值,并估计该快餐店在前天内每日接待的顾客人数的平均数;(2)已知该快餐店在前50天内每日接待的顾客人数的方差为,在后天内每日接待的顾客人数的平均数为、方差为,估计这家快餐店这天内每日接待的顾客人数的平均数和方差.()19.(12分)已知内角A,B,C的对边分别为a,b,c,且B,A,C成等差数列.(1)求A的大小;(2)若,且的面积为,求的周长.20.(12分)设数列的前项和为,,且满足,.(1)求数列的通项公式;(2)证明:对一切正整数,有.21.(12分)已知圆过点且与圆外切于点,直线将圆分成弧长之比为的两段圆弧(1)求圆的标准方程;(2)直线的斜率22.(10分)等差数列中,,(1)求数列的通项公式;(2)若满足数列为递增数列,求数列前项和

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据题意,分2种情况讨论:①、甲是最后一名,则乙可以为第二、三、四名,剩下的三人安排在其他三个名次,②、甲不是最后一名,甲乙需要排在第二、三、四名,剩下的三人安排在其他三个名次,由加法原理计算可得答案【详解】根据题意,甲乙都没有得到冠军,而乙不是最后一名,分2种情况讨论:①甲是最后一名,则乙可以为第二、三、四名,即乙有3种情况,剩下的三人安排在其他三个名次,有种情况,此时有种名次排列情况;②甲不是最后一名,甲乙需要排在第二、三、四名,有种情况,剩下的三人安排在其他三个名次,有种情况,此时有种名次排列情况;则一共有种不同的名次情况,故选:A2、A【解析】详解】试题分析:由题意知,即,由于m>1,n>0,可得m>n,又=,故.故选A【考点】椭圆的简单几何性质,双曲线的简单几何性质【易错点睛】计算椭圆的焦点时,要注意;计算双曲线的焦点时,要注意.否则很容易出现错误3、C【解析】由是的充分不必要条件,则是的充分不必要条件,再根据对应集合的包含关系可得答案.【详解】由,即,设,由是的充分不必要条件,则是的充分不必要条件所以,则故选:C4、B【解析】求导后,令,可求得,再利用导数可得为减函数,比较的大小后,根据为减函数可得答案.【详解】由题意得,,,解得,所以所以,所以为减函数因为,所以,故选:B【点睛】关键点点睛:比较大小的关键是知道的单调性,利用导数可得的单调性.5、B【解析】利用双曲线的离心率,以及渐近线中,关系,结合找关系即可【详解】解:,又因为在双曲线中,,所以,故,所以双曲线的渐近线方程为,故选:B6、B【解析】由双曲线定义结合通径公式、化简得出,最后得出离心率.【详解】,,,解得故选:B7、D【解析】根据是正三角形可得的坐标,代入方程后可求离心率.【详解】不失一般性,可设椭圆的方程为:,为半焦距,为右焦点,因为且,故,故,,整理得到,故,故选:D.8、B【解析】设,过点作的平行线,与平行的半径交于点,找出异面直线与所成角,然后通过解三角形可得出所求角的余弦值.【详解】设,过点作的平行线,与平行的半径交于点,则,,所以为异面直线与所成的角,在三角形中,,,所以.故选:B.【点睛】本题考查异面直线所成角余弦值的计算,一般通过平移直线的方法找到异面直线所成的角,考查计算能力,属于中等题.9、C【解析】根据空间两点间距离公式,结合对称性进行求解即可.【详解】因为点关于原点的对称点为,所以,因此,故选:C10、A【解析】利用为定值即可获解.【详解】设则又,所以所以当且仅当,即,取等故选:A11、A【解析】求出直线的斜率,由斜率得倾斜角【详解】由题意直线斜率为,所以倾斜角为故选:A12、B【解析】利用特殊值法可判断ACD的正误,根据不等式的性质,可判断B的正误.【详解】对于A中,令,,,,满足,,但,故A错误;对于B中,因为,所以由不等式的可加性,可得,所以,故B正确;对于C中,令,,,,满足,,但,故C错误;对于D中,令,,,,满足,,但,故D错误故选:B二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】由已知及等比数列的通项公式得到首项和公比,再利用前n项和公式计算即可.【详解】设等比数列的公比为,由已知,得,解得,所以.故答案为:14、【解析】由空间向量的模的计算求得向量的模,再由单位向量的定义求得答案.【详解】解:因为,所以,所以与向量同方向的单位向量的坐标为,故答案为:.15、【解析】由等差数列和等比数列的通项公式,可得,由不在集合中,在集合中,也在集合中,推得不在数列的前50项内,则数列的前50项中包括的前48项和数列中的3和27,结合等差数列的求和公式,即可求解.【详解】由题意,集合构成数列是首项为1,公差为4的等差数列,集合构成数列是首项为1,公比为3的等比数列,可得,又由不在集合中,在集合中,也在集合中,因为,解得,此时,所以不在数列的前50项内,则数列的前50项的和为.故答案为:.16、【解析】欲求两圆圆心的距离,将它放在与球心组成的三角形中,只要求出球心角即可,通过球的性质构成的直角三角形即可解得【详解】∵,球半径为4,∴小圆的半径为,∵小圆中弦长,作垂直于,∴,同理可得,在直角三角形中,∵,,∴,∴,∴故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、或【解析】先假设命题、为真,分别求得实数的取值范围,再由命题、具体的真假,取实数的取值范围或其补集,最终确定实数的取值范围.【详解】若命题p为真,则“,”为假命题则,恒成立∴恒成立,即∴,∴.若命题q为真,则,即∴∴∵是真命题,是假命题∴命题、必为一真一假.①当p真q假时,∴;②当p假q真时,∴.综上所述:a的取值范围是或.18、(1),,,平均数为;(2)平均数为,方差为.【解析】(1)计算出第组的频数,可求得的值,利用频数、频率和总数的关系可求出的值,求出第组的频率,除以组距可得的值,利用平均数公式可求得该快餐店在前天内每日接待的顾客人数的平均数;(2)设前天接待的顾客人数分别为、、、,后天接待的顾客人数分别为、、、,利用平均数公式和方差公式可求得结果.【小问1详解】解:由表可知第组的频数为,所以,,,第组的频率为,,前天内每日接待的顾客人数的平均数为:.【小问2详解】解:设前天接待的顾客人数分别为、、、,后天接待的顾客人数分别为、、、,则由(1)知前天的平均数,方差,后天的平均数,方差,故这天的平均数为,,同理,这天的方差,由以上三式可得.19、(1)(2)【解析】(1)由等差数列的性质结合内角和定理得出A的大小;(2)先由余弦定理,结合,,得到的关系式,再由的面积为,得到的关系式,两式联立可求出,进而可确定结果.【小问1详解】因为B,A,C成等差数列,所以,所以.【小问2详解】因为,,由余弦定理可得:;又的面积为,所以,所以,所以,所以周长为.20、(1),;(2)证明见解析.【解析】(1)利用关系可得,根据等比数列的定义易知为等比数列,进而写出的通项公式;(2)由,将不等式左侧放缩,即可证结论.【小问1详解】当时,,,两式相减得:,整理可得:,而,所以是首项为2,公比为1的等比数列,故,即,.【小问2详解】,..21、(1);(2).【解析】(1)分析可知圆心在轴上,可设圆心,根据圆过点、可得出关于的方程,求出的值,可得出圆心的坐标,进而可求得圆的半径,即可得出圆的标准方程;(2)利用几何关系可求得圆心到直线的距离为,再利用点到直线的距离公式可求得的值.【小问1详解】解:圆的圆心为,记点、,直线即为轴,因为圆与圆外切于点,则圆心在轴上,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论