2025届广东深圳市高一数学第一学期期末检测模拟试题含解析_第1页
2025届广东深圳市高一数学第一学期期末检测模拟试题含解析_第2页
2025届广东深圳市高一数学第一学期期末检测模拟试题含解析_第3页
2025届广东深圳市高一数学第一学期期末检测模拟试题含解析_第4页
2025届广东深圳市高一数学第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届广东深圳市高一数学第一学期期末检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,其中,则()A. B.C. D.2.表示集合中整数元素的个数,设,,则()A.5 B.4C.3 D.23.函数的一个零点落在下列哪个区间()A.(0,1) B.(1,2)C.(2,3) D.(3,4)4.若用二分法逐次计算函数在区间内的一个零点附近的函数值,所得数据如下:0.510.750.6250.562510.4620.155则方程的一个近似根(精度为0.1)为()A.0.56 B.0.57C.0.65 D.0.85.下列说法中,正确的是()A.若,则B.函数与函数是同一个函数C.设点是角终边上的一点,则D.幂函数的图象过点,则6.设,,则的值为()A. B.C.1 D.e7.函数的最小值为()A. B.C.0 D.8.若函数在上是增函数,则实数的取值范围是()A. B.C. D.9.若,,若,则a的取值集合为()A. B.C. D.10.下列函数在定义域内单调递增的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,若集合,,则图中阴影部分表示的集合为___12.已知函数的图像恒过定点,则的坐标为_____________.13.若函数在区间上单调递减,则实数的取值范围是__________14.若实数x,y满足,且,则的最小值为___________.15.已知表示这个数中最大的数.能够说明“对任意,都有”是假命题的一组整数的值依次可以为_____16.已知,均为锐角,,,则的值为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面直角坐标系中,已知点,,在圆上(1)求圆的方程;(2)过点的直线交圆于,两点.①若弦长,求直线的方程;②分别过点,作圆的切线,交于点,判断点在何种图形上运动,并说明理由.18.定义在R上的函数对任意的都有,且,当时.(1)求的值,并证明是R上的增函数;(2)设,(i)判断的单调性(不需要证明)(ii)解关于x的不等式.19.已知函数,为偶函数(1)求k的值.(2)若函数,是否存在实数m使得的最小值为0,若存在,求出m的值;若不存在,请说明理由20.设函数的定义域为A,集合.(1);(2)若集合是的子集,求实数a的取值范围.21.已知函数,.(1)求函数的定义域;(2)求不等式的解集.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】化简已知条件,结合求得的值.【详解】依题意,,所以,,由于,所以.故选:D2、C【解析】首先求出集合,再根据交集的定义求出,即可得解;【详解】解:因为,,所以,则,,,所以;故选:C3、B【解析】求出、,由及零点存在定理即可判断.【详解】,,,则函数的一个零点落在区间上.故选:B【点睛】本题考查零点存在定理,属于基础题.4、B【解析】利用零点存在性定理和精确度要求即可得解.【详解】由表格知在区间两端点处的函数值符号相反,且区间长度不超过0.1,符合精度要求,因此,近似值可取此区间上任一数故选:B5、D【解析】A选项,举出反例;B选项,两函数定义域不同;C选项,利用三角函数定义求解;D选项,待定系数法求出解析式,从而得到答案.【详解】A选项,当时,满足,而,故A错误;B选项,定义域为R,定义域为,两者不是同一个函数,B错误;C选项,,C错误;D选项,设,将代入得:,解得:,所以,D正确.故选:D6、A【解析】根据所给分段函数解析式计算可得;【详解】解:因为,,所以,所以故选:A7、C【解析】利用对数函数单调性得出函数在时取得最小值【详解】,因为是增函数,因此当时,,,当时,,,而时,,所以时,故选:C8、B【解析】令,则可得,解出即可.【详解】令,其对称轴为,要使在上是增函数,则应满足,解得.故选:B.9、B【解析】或,分类求解,根据可求得的取值集合【详解】或,,,或或,解得或,综上,故选:10、D【解析】根据题意,依次分析选项中函数的单调性,综合即可得答案详解】解:根据题意,依次分析选项:对于A,,是二次函数,在其定义域上不是单调函数,不符合题意;对于B,,是正切函数,在其定义域上不是单调函数,不符合题意;对于C,,是指数函数,在定义域内单调递减,不符合题意;对于D,,是对数函数,在定义域内单调递增,符合题意;故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】图像阴影部分对应的集合为,,故,故填.12、【解析】由过定点(0,1),借助于图像平移即可.【详解】过定点(0,1),而可以看成的图像右移3个单位,再下移2个点位得到的,所以函数的图像恒过定点即A故答案为:【点睛】指数函数图像恒过(0,1),对数函数图像恒过(1,0).13、【解析】本题等价于在上单调递增,对称轴,所以,得.即实数的取值范围是点睛:本题考查复合函数的单调性问题.复合函数的单调性遵循“同增异减”的性质.所以本题的单调性问题就等价于在上单调递增,为开口向上的抛物线单调性判断,结合图象即可得到答案14、8【解析】由给定条件可得,再变形配凑借助均值不等式计算作答.【详解】由得:,又实数x,y满足,则,当且仅当,即时取“=”,由解得:,所以当时,取最小值8.故答案为:8【点睛】思路点睛:在运用基本不等式时,要特别注意“拆”、“拼”、“凑”等技巧,使用其满足基本不等式的“一正”、“二定”、“三相等”的条件.15、(答案不唯一)【解析】首先利用新定义,再列举命题为假命题的一组数值,再根据定义,验证命题是假命题.【详解】设,,则,而,,故命题为假命题,故依次可以为故答案为:(答案不唯一)16、【解析】直接利用两角的和的正切关系式,即可求出结果【详解】已知,均锐角,,,则,所以:,故故答案为【点睛】本题主要考查了三角函数关系式的恒等变换,以及两角和的正切关系式的应用,其中解答中熟记两角和的正切的公式,准确运算是解答的关键,主要考查学生的运算能力和转化能力,属于基础题型三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)设圆的方程为:,将点,,分别代入圆方程列方程组可解得,,,从而可得圆的方程;(2)①由(1)得圆的标准方程为,讨论两种情况,当直线的斜率存在时,设为,则的方程为,由弦长,根据点到直线距离公式列方程求得,从而可得直线的方程;②,利用两圆公共弦方程求出切点弦方程,将代入切点弦方程,即可得结果.试题解析:(1)设圆方程为:,由题意可得解得,,,故圆方程为(2)由(1)得圆的标准方程为①当直线的斜率不存在时,的方程是,符合题意;当直线的斜率存在时,设为,则的方程为,即,由,可得圆心到的距离,故,解得,故的方程是,所以,方程是或②设,则切线长,故以为圆心,为半径的圆的方程为,化简得圆的方程为:,①又因为的方程为,②②①化简得直线的方程为,将代入得:,故点在直线上运动18、(1),证明见解析(2)(i)在上是单减单减函数(ii)【解析】(1)令可得,再可得答案,设,则,所以可证明单调性;(2)(i)根据复合函数的单调性法则可得答案;(ii)由题意可得,,结合函数的单调性可得的解为,则原不等式等价于,从而可得答案.【小问1详解】在中,令可得,则令可得,可得任取且,则,所以则即,所以是R上的增函数【小问2详解】(i)由在上是单减单减函数,又单调递增由复合函数的单调性规律可得在上是单减单减函数.(ii)由,所以的解为从而不等式的解为,即即,整理可得即,解得或,所以或所以原不等式的解集为19、(1)(2)存在使得的最小值为0【解析】(1)利用偶函数的定义可得,化简可得对一切恒成立,进而求得的值;(2)由(1)知,,令,则,再分、、进行讨论即可得解【小问1详解】解:由函数是偶函数可知,,即,所以,即对一切恒成立,所以;【小问2详解】解:由(1)知,,,令,则,①当时,在上单调递增,故,不合题意;②当时,图象对称轴为,则在上单调递增,故,不合题意;③当时,图象对称轴为,当,即时,,令,解得,符合题意;当,即时,,令,解得(舍;综上,存在使得的最小值为020、(1);(2).【解析】(1)由函数的定义域、指数函数的性质可得,,再由集合的并集运算即可得解;(2)由集合的交集运算可得,再由集合的关系可得,即可得解.【详解】由可得,所以,,(1)所以;(2)因为,所以,所以,解得,所以实数a的取值范围为.【点睛】本题考查了函数定义域及指数不等式的求解,考查了集合的运算及根据集合间的关系求参数,属于基础题.21、(1)(2)答案见解析【解析】(1)根据对数的真

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论