




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学典型例题系列之函数篇第五讲:二次函数与相似三角形存在问题专项练习(原卷版)1.(2022·四川绵阳·东辰国际学校校考模拟预测)如图,在平面直角坐标系中,直线与轴,轴分别交于、两点,抛物线经过、两点,与轴负半轴交于点,连接,且.(1)求抛物线解析式.(2)点是抛物线上的一点.①当点在第一象限时,过点作轴交于点,过点作轴交于点,连接,当和相似时,求点的坐标.②当时,求点的坐标.2.(2022·内蒙古包头·模拟预测)如图,已知正方形的边,分别在x轴和y轴的正半轴上,点B的坐标为.二次函数的图象经过点A,B,且x轴的交点为E,F.点P在线段上运动,过点O作于点H.直线交直线于点D,连接.(1)求,的值及点E和点F的坐标;(2)在点P运动的过程中,当与以A,B,D为顶点的三角形相似时,求点P的坐标;(3)当点P运动到的中点时,能否将绕平面内某点旋转后使得的两个顶点落在x轴上方的抛物线上?若能,请直接写出旋转中心M的坐标;若不能,请说明理由.3.(2023秋·山东济南·九年级期末)如图,直线与x轴交于点,与y轴交于点B,抛物线经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M为线段上一动点,过点M且垂直于x轴的直线与直线及抛物线分别交于点P,N.若以B,P,N为顶点的三角形与相似,求点M的坐标;(3)将抛物线在之间的部分记为图象L,将图象L在直线上方部分沿直线翻折,其余部分保持不动,得到一个新的函数图象,记这个函数的最大值为a,最小值为b,若,请直接写出t的取值范围.4.(2022·辽宁丹东·校考一模)已知抛物线经过点,,与x轴交于另一点C,连接.(1)求抛物线的解析式;(2)如图,P是第一象限内抛物线上一点,且,求直线的表达式;(3)在抛物线上是否存在点D,直线交x轴于点E,使与以A,B,C,E中的三点为顶点的三角形相似(不重合)?若存在,请直接写出点D的坐标;若不存在,请说明理由.5.(2022·宁夏银川·校考三模)如图,平面直角坐标系中,四边形为矩形,点A、B的坐标为、,动点M、N分别从O、B同时出发,都以每秒1个单位的速度运动,其中点M沿向终点A运动,点N沿向终点C运动,过点N作,交于点P,连接,已知动点运动了x秒.(1)用含x的代数式表示P的坐标.(2)设四边形的面积是y,求y的最小值,求出此时x的值.(3)是否存在x的值,使以P、A、M为顶点的三角形与相似?若存在,请求出x的值;若不存在,请说明理由.6.(2022·河南郑州·统考一模)已知,二次函数的图象与轴交于A,两点(点A在点的左边),与轴交于点,点A的坐标为,且.(1)求二次函数的解析式;(2)当时,求二次函数的最大值和最小值分别为多少?(3)设点与点关于该抛物线的对称轴对称.在轴上是否存在点,使与相似,且与是对应边?若存在,求出点的坐标;若不存在,请说明理由.7.(2022·湖南长沙·校考三模)如图1,已知二次函数的图象的顶点为,且经过点.(1)求二次函数的解析式;(2)过点A的直线与二次函数图象的另一交点为B,与y轴交于点C,若的面积是的两倍,求直线AB的解析式;(3)如图2,已知,是x轴上一动点(E,O不重合),过E的两条直线,与二次函数均只有一个交点,且直线,与y轴分别交于点M、N.对于任意的点E,在y轴上(点M、N上方)是否存在一点,使恒成立.若存在,求出t的值;若不存在,请说明理由.8.(2022·黑龙江绥化·校考三模)如图,抛物线经过三点.(1)求出抛物线的解析式;(2)在直线上方的抛物线上有一点D,使得的面积最大,求出点D的坐标;(3)P是直线x=1右侧的抛物线上一动点,过P作轴,垂足为M,是否存在P点,使得以为顶点的三角形与相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.9.(2022·广东深圳·深圳市海滨中学校考模拟预测)在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c与x轴交于A(-1,0),B(4,0)两点,与y轴交于点C(0,-2).(1)求抛物线的函数表达式;(2)如图1,点D为第四象限抛物线上一点,连接AD,BC交于点E,连接BD,记△BDE的面积为S1,△ABE的面积为S2,求的最大值;(3)如图2,连接AC,BC,过点O作直线l∥BC,点P,Q分别为直线l和抛物线上的点.试探究:在第一象限是否存在这样的点P,Q,使△PQB∽△CAB?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.10.(2022·广东深圳·深圳市南山外国语学校校考三模)已知抛物线与轴的交点为点、点且,点是抛物线的一个动点不与点、重合
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 比亚迪基金合伙协议书
- 签署补充协议书
- 自愿购车协议书
- 电费报销协议书
- 管道赔偿协议书
- 道馆加盟协议书
- 商业街小吃合同协议书
- 股东退资协议书
- 客户更名或过户协议书
- 合作投资分公司协议书
- GB/T 11023-2018高压开关设备六氟化硫气体密封试验方法
- 脑卒中风险评估(改良的弗明汉卒中量表)老年健康与医养结合服务管理
- 九年级十二班走读生家长会课件
- 工改工政策分析课件
- 醇基燃料技术资料
- 施工企业资质及承接工程的范围
- 泥浆测试记录表
- 《摩擦力》说课课件(全国获奖实验说课案例)
- 个人信用报告异议申请表
- 初中数学 北师大版 七年级下册 变量之间的关系 用图象表示的变量间关系 课件
- 2023年艺术与审美期末试卷答案参考
评论
0/150
提交评论