第五章相交线与平行线单元检测卷(B卷)_第1页
第五章相交线与平行线单元检测卷(B卷)_第2页
第五章相交线与平行线单元检测卷(B卷)_第3页
第五章相交线与平行线单元检测卷(B卷)_第4页
第五章相交线与平行线单元检测卷(B卷)_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

20222023学年七年级下册第一单元检测解析卷(B卷)(考试时间:120分钟试卷满分:120分)选择题(本题共10小题,每小题3分,共30分)。1.(茂名)下列选项中能由如图平移得到的是()A. B. C. D.【答案】C【解答】解:能由左图平移得到的是:选项C.故选:C.2.(2022春•沂水县期中)如果直线ON⊥直线a,直线OM⊥直线a,那么OM与ON重合(即O,M,N三点共线),其理由是()A.两点确定一条直线 B.在同一平面内,过两点有且只有一条直线与已知直线垂直 C.在同一平面内,过一点有且只有一条直线与已知直线垂直 D.两点之间,线段最短【答案】C【解答】解:如果直线ON⊥直线a,直线OM⊥直线a,那么OM与ON重合(即O,M,N三点共线),其理由是在同一平面内,过一点有且只有一条直线与已知直线垂直,故选:C.3.(翔安区模拟)如图,过直线外一点作已知直线的平行线,其依据是()A.同位角相等,两直线平行 B.内错角相等,两直线平行 C.两直线平行,同位角相等 D.两直线平行,内错角相等【答案】A【解答】解:由图形得,有两个相等的同位角,所以只能依据:同位角相等,两直线平行,故选:A.4.(广州)在6×6方格中,将图1中的图形N平移后位置如图2所示,则图形N的平移方法中,正确的是()A.向下移动1格 B.向上移动1格 C.向上移动2格 D.向下移动2格【答案】D【解答】解:观察图形可知:从图1到图2,可以将图形N向下移动2格.故选:D.5.(2020秋•秦都区期末)如图,直线a,b与直线c,d相交,已知∠1=∠2,∠3=100°,则∠4的度数是()A.70° B.80° C.110° D.100°【答案】B【解答】解:如图,∵∠1=∠2,∴a∥b,∴∠5=∠3=100°,∴∠4=180°﹣∠5=80°则∠4的度数是80°.故选:B.6.(2022春•宜春期末)点P为直线l外一点,点A、B、C为直线l上三点,PA=4cm,PB=5cm,PC=3cm,则点P到直线l的距离为()A.4cm B.5cm C.小于3cm D.不大于3cm【答案】D【解答】解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短,∴点P到直线l的距离≤PC,即点P到直线l的距离不大于3cm.故选:D.7.有下列命题:①对顶角相等;②同位角相等;③互补的两个角为邻补角;④若l1⊥l2,l1⊥l3,则l2⊥l3.其中真命题有()A.① B.①②③ C.①③ D.①②③④【答案】A【解答】解:①对顶角相等,是真命题;②两直线平行,同位角相等,故本小题命题是假命题;③互补的两个角不一定为邻补角,故本小题命题是假命题;④若l1⊥l2,l1⊥l3,则l2∥l3,故本小题命题是假命题故选:A.8.(盐城模拟)如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是()A.60° B.50° C.40° D.30°【答案】C【解答】解:如图所示,∵FE⊥BD,∴∠FED=90°,∴∠1+∠D=90°,∵∠1=50°,∴∠D=40°,∵AB∥CD,∴∠2=∠D=40°.故选:C.9.(武义县模拟)如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐弯处的∠A是72°,第二次拐弯处的角是∠B,第三次拐弯处的∠C是153°,这时道路恰好和第一次拐弯之前的道路平行,则∠B等于()A.81° B.99° C.108° D.120°【答案】B【解答】解:过B作BD∥AE,∵AE∥CF,∴BD∥CF,∴∠A=∠ABD=72°,∠DBC+∠C=180°,∵∠C=153°,∴∠DBC=27°,则∠ABC=∠ABD+∠DBC=99°.故选:B.10.(2021春•蒙阴县期末)如图1是长方形纸带,∠DEF=10°,将纸带沿EF折叠成图2,再沿BF折叠成图3,则图3中∠CFE度数是多少()A.160° B.150° C.120° D.110°【答案】B【解答】解:∵四边形ABCD为长方形,∴AD∥BC,∴∠BFE=∠DEF=10°.由翻折的性质可知:图2中,∠EFC=180°﹣∠BFE=170°,∠BFC=∠EFC﹣∠BFE=160°,∴图3中,∠CFE=∠BFC﹣∠BFE=150°.故选:B.填空题(本题共6题,每小题3分,共18分)。11.(2020春•鱼台县期末)如图,村庄A到公路BC的最短距离是AD的长,其根据是.【答案】垂线段最短【解答】解:村庄A到公路BC的最短距离是AD的长,其根据是垂线段最短,故答案为:垂线段最短.12.如图,AB与CD相交于点O,已知∠1=60°,CD∥BE,则∠B的度数是.【答案】120°【解答】解:∵CD∥BE,∴∠BOD+∠B=180°,∵∠BOD=∠1=60°,∴∠B=180°﹣60°=120°,13.(嘉陵区期中)如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠COM=.【答案】38°【解答】解:∵∠BOD=∠AOC(对顶角相等),∠BOD=76°,∴∠AOC=76°,∵射线OM平分∠AOC,∴∠AOM=∠COM=×76°=38°.故答案为:38°.14.(杭州校级三模)将直角梯形ABCD平移得梯形EFGH,若HG=10,MC=2,MG=4,则图中阴影部分的面积为.【答案】36【解答】解:∵阴影部分的面积等于梯形ABCD的面积减去梯形EFMD的面积,等于梯形EFGH的面积减去梯形EFDM的面积,∴阴影部分的面积等于梯形DHGM的面积,∵HG=10,MC=2,MG=4,∴S阴=SDHGM=×(8+10)×4=36.故答案为:36.15.(奉化区校级期末)如图,将一块长方形纸条折成如图的形状,若已知∠1=110°,则∠2=°.【答案】55【解答】解:∵∠1=110°,纸条的两边互相平行,∴∠3=180°﹣∠1=180°﹣110°=70°.根据翻折的性质,∠2=(180°﹣∠3)=(180°﹣70°)=55°.故答案为:55.16.(茂县一模)如图,a∥b,∠1=65°,∠2=140°,则∠3等于.【答案】105°【解答】解:∵∠1+∠4=∠2,∴∠4=∠2﹣∠1=140°﹣65°=75°,∵a∥b,∴∠3+∠4=180°,∴∠3=105°,故答案为:105°.三、解答题(本题共6题,17题6分,1819题8分,2022题10分)。17.如图是一条河,C是河岸AB外一点.(1)过点C要修一条与河平行的绿化带(用直线表示),请作出正确的示意图;(2)现欲用水管从河岸AB将水引到C处,问:从河岸AB上的何处开口,才能使所用的水管最短?画图表示,并说明设计的理由.【解答】解:(1)如图,过点C画一条平行于AB的直线MN,则MN为绿化带.(2)如图,过点C作CD⊥AB于点D,从河岸AB上的点D处开口,才能使所用的水管最短.设计的理由是垂线段最短.18.(2022春•道县期末)已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,求证:AB∥CD.【解答】证明:∵AE⊥BC,FG⊥BC,∴∠AMB=∠GNM=90°,∴AE∥FG,∴∠A=∠1;又∵∠2=∠1,∴∠A=∠2,∴AB∥CD.19.(2021春•商州区期末)如图,直线AB,CD相交于点O,OF⊥CD,OE平分∠BOC.(1)若∠BOE=65°,求∠DOE的度数;(2)若∠BOD:∠BOE=2:3,求∠AOF的度数.【解答】(1)∵OE平分∠BOC,∠BOE=65°,∴∠EOC=∠BOE=65°,∴∠DOE=180°﹣65°=115°.(2)∵∠BOD:∠BOE=2:3,设∠BOD=x,则,∵∠COE+∠BOE+∠BOD=180°,∴x+x+x=180°,∴x=45°.即∠BOD=45°,∵OF⊥CD,∠AOC=∠BOD=45°,∴∠COF=90°,∴∠AOF=90°﹣45°=45°.20.(2021春•五峰县期末)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.【解答】解:∵AB∥CD,∴∠ABC=∠1=65°(两直线平行,同位角相等),∠ABD+∠BDC=180°(两直线平行,同旁内角互补),∵BC平分∠ABD,∴∠ABD=2∠ABC=130°(角平分线定义)∴∠BDC=180°﹣∠ABD=50°,∴∠2=∠BDC=50°(对顶角相等).21.(2021秋•九龙县期末)如图,已知点A在EF上,点P,Q在BC上,∠E=∠EMA,∠BQM=∠BMQ.(1)求证:EF∥BC;(2)若FP⊥AC,∠2+∠C=90°,求证:∠1=∠B;(3)若∠3+∠4=180°,∠BAF=3∠F﹣20°,求∠B的度数.【答案】(1)略(2)略(3)50°【解答】(1)证明:∵∠E=∠EMA,∠BQM=∠BMQ,∠EMA=∠BMQ,∴∠E=∠BQM,∴EF∥BC;(2)证明:∵FP⊥AC,∴∠PGC=90°,∵EF∥BC,∴∠EAC+∠C=180°,∵∠2+∠C=90°,∴∠BAC=∠PGC=90°,∴AB∥FP,∴∠1=∠B;(3)解:∵∠3+∠4=180°,∠4=∠MNF,∴∠3+∠MNF=180°,∴AB∥FP,∴∠F+∠BAF=180°,∵∠BAF=3∠F﹣20°,∴∠F+3∠F﹣20°=180°,解得∠F=50°,∵AB∥FP,EF∥BC,∴∠B=∠1,∠1=∠F,∴∠B=∠F=(30.22.(崇川区期末)如图1,MN∥EF,C为两直线之间一点.(1)如图1,若∠MAC与∠EBC的平分线相交于点D,若∠ACB=100°,求∠ADB的度数.(2)如图2,若∠CAM与∠CBE的平分线相交于点D,∠ACB与∠ADB有何数量关系?并证明你的结论.(3)如图3,若∠CAM的平分线与∠CBF的平分线所在的直线相交于点D,请直接写出∠ACB与∠ADB之间的数量关系:.【解答】解:(1)如图1,过C作CG∥MN,DH∥MN,∵MN∥EF,∴MN∥CG∥DH∥EF,∴∠1=∠ADH,∠2=∠BDH,∠MAC=∠ACG,∠EBC=∠BCG,∵∠MAC与∠EBC的平分线相交于点D,∴∠1=ACG,∠2=,∴∠ADB=(∠ACG+∠BCG)=∠ACB;∵∠ACB=100°,∴∠ADB=50°;(2)如图2,过C作CG∥MN,DH∥MN,∵MN∥EF,∴MN∥CG∥DH∥EF,∴∠1=∠ADH,∠2=∠BDH,∠NAC=∠ACG,∠FBC=∠BCG,∵∠MAC与∠EBC的平分线相交于点D,∴∠1=MAC,∠2=EBC,∴∠ADB=∠1+∠2=(∠MAC+∠EBC)=(180°﹣∠NAC+180°﹣∠FBC)=(360°﹣∠ACB),∴∠ADB=180°﹣∠ACB;(3)如图3,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论