专题16特殊四边形专题2_第1页
专题16特殊四边形专题2_第2页
专题16特殊四边形专题2_第3页
专题16特殊四边形专题2_第4页
专题16特殊四边形专题2_第5页
已阅读5页,还剩98页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题16特殊四边形专题1.(2022·江苏无锡·中考真题)如图,在ABCD中,,,点E在AD上,,则的值是(

)A. B. C. D.【答案】D【分析】过点B作BF⊥AD于F,由平行四边形性质求得∠A=75°,从而求得∠AEB=180°∠A∠ABE=45°,则△BEF是等腰直角三角形,即BF=EF,设BF=EF=x,则BD=2x,DF=,DE=DFEF=(1)x,AF=ADDF=BDDF=(2)x,继而求得AB2=AF2+BF2=(2)2x2+X2=(84)x2,从而求得,再由AB=CD,即可求得答案.【详解】解:如图,过点B作BF⊥AD于F,∵ABCD,∴CD=AB,CDAB,∴∠ADC+∠BAD=180°,∵∴∠A=75°,∵∠ABE=60°,∴∠AEB=180°∠A∠ABE=45°,∵BF⊥AD,∴∠BFD=90°,∴∠EBF=∠AEB=45°,∴BF=FE,∵AD=BD,∴∠ABD=∠A=75°,∴∠ADB=30°,设BF=EF=x,则BD=2x,由勾股定理,得DF=,∴DE=DFEF=(1)x,AF=ADDF=BDDF=(2)x,由勾股定理,得AB2=AF2+BF2=(2)2x2+x2=(84)x2,∴∴,∵AB=CD,∴,故选:D.2.(2022·江苏南通·中考真题)如图,在中,对角线相交于点O,,若过点O且与边分别相交于点E,F,设,则y关于x的函数图像大致为(

)A.B. C. D.【答案】C【分析】过点O向AB作垂线,交AB于点M,根据含有30°角的直角三角形性质以及勾股定理可得AB、AC的长,再结合平行四边形的性质可得AO的长,进而求出OM、AM的长,设,则,然后利用勾股定理可求出y与x的关系式,最后根据自变量的取值范围求出函数值的范围,即可做出判断.【详解】解:如图过点O向AB作垂线,交AB于点M,∵AC⊥BC,∠ABC=60°,∴∠BAC=30°,∵BC=4,∴AB=8,AC=,∵四边形ABCD是平行四边形,∴,∴,∴,设,则,∵,∴,当时,,当时,.且图像是二次函数的一部分故选:C.3.(2023·江苏苏州·中考真题)如图,在平面直角坐标系中,点的坐标为,点的坐标为,以为边作矩形.动点分别从点同时出发,以每秒1个单位长度的速度沿向终点移动.当移动时间为4秒时,的值为(

)A. B. C. D.【答案】D【分析】根据题意,得出,,勾股定理求得,,即可求解.【详解】解:连接、

∵点的坐标为,点的坐标为,以为边作矩形.∴,则,依题意,,∴,则,∴∴,∴,∵,∴故选:D.4.(2023·江苏泰州·中考真题)菱形的边长为2,,将该菱形绕顶点A在平面内旋转,则旋转后的图形与原图形重叠部分的面积为(

)A. B. C. D.【答案】A【分析】分两种情况:①如图,将该菱形绕顶点A在平面内顺时针旋转,连接,相交于点O,与交于点E,根据菱形的性质推出的长,再根据菱形的性质推出与的长,再根据重叠部分的面积求解即可.②将该菱形绕顶点A在平面内逆时针旋转,同①方法可得重叠部分的面积.【详解】解:①如图,将该菱形绕顶点A在平面内顺时针旋转30°,连接,相交于点O,与交于点E,

∵四边形是菱形,,∴,∵,∴,,∴,∵菱形绕点A顺时针旋转得到菱形,∴,∴A,,C三点共线,∴,又∵,∴,,∵重叠部分的面积,∴重叠部分的面积;②将该菱形绕顶点A在平面内逆时针旋转,同①方法可得重叠部分的面积,故选:A.5.(2023·江苏南通·中考真题)如图,四边形是矩形,分别以点,为圆心,线段,长为半径画弧,两弧相交于点,连接,,.若,,则的正切值为(

A. B. C. D.【答案】C【分析】设,交于点,根据矩形的性质以及以点,为圆心,线段,长为半径画弧得到,,设,故,在中求出的值,从而得到,从而得到,即可求得答案.【详解】解:设,交于点,由题意得,,,四边形是矩形,,,,,设,故,在中,,即,解得,,,,,.

故选:C.6.(2023·江苏宿迁·中考真题)如图,直线、与双曲线分别相交于点.若四边形的面积为4,则的值是(

)A. B. C. D.1【答案】A【分析】连接四边形的对角线,过作轴,过作轴,直线与轴交于点,如图所示,根据函数图像交点的对称性判断四边形是平行四边形,由平行四边形性质及平面直角坐标系中三角形面积求法,确定,再求出直线与轴交于点,通过联立求出纵坐标,代入方程求解即可得到答案.【详解】解:连接四边形的对角线,过作轴,过作轴,直线与轴交于点,如图所示:

根据直线、与双曲线交点的对称性可得四边形是平行四边形,,直线与轴交于点,当时,,即,与双曲线分别相交于点,联立,即,则,由,解得,,即,解得,故选:A.7.(2022·江苏淮安·中考真题)如图,在中,,若,则的度数是.【答案】/40度【分析】根据平行四边形对边平行可得,利用平行线的性质可得,因此利用直角三角形两个锐角互余求出即可.【详解】解:∵四边形是平行四边形,∴,∴,∵,∴,∵,∴,∴,故答案为:.8.(2022·江苏南京·中考真题)如图,的顶点、分别在直线,上,,若,,则.【答案】/32度【分析】根据平行四边形的性质得到,再利用平行线的性质得到即可解答.【详解】解:过点作,∴∵,∴,∴,∴,∵在中,∴,∵,∴,∵,∴,故答案为:.9.(2021·江苏常州·中考真题)如图,在平面直角坐标系中,四边形是平行四边形,其中点A在x轴正半轴上.若,则点A的坐标是.【答案】(3,0)【分析】根据平行四边形的性质,可知:OA=BC=3,进而即可求解.【详解】解:∵四边形是平行四边形,∴OA=BC=3,∴点A的坐标是(3,0),故答案是:(3,0).10.(2022·江苏连云港·中考真题)如图,在中,.利用尺规在、上分别截取、,使;分别以、为圆心,大于的长为半径作弧,两弧在内交于点;作射线交于点.若,则的长为.【答案】【分析】如图所示,过点H作HM⊥BC于M,由作图方法可知,BH平分∠ABC,即可证明∠CBH=∠CHB,得到,从而求出HM,CM的长,进而求出BM的长,即可利用勾股定理求出BH的长.【详解】解:如图所示,过点H作HM⊥BC于M,由作图方法可知,BH平分∠ABC,∴∠ABH=∠CBH,∵四边形ABCD是平行四边形,∴,∴∠CHB=∠ABH,∠C=180°∠ABC=30°,∴∠CBH=∠CHB,∴,∴,∴,∴,∴,故答案为:.11.(2021·江苏扬州·中考真题)如图,在中,点E在上,且平分,若,,则的面积为.【答案】50【分析】过点E作EF⊥BC,垂足为F,利用直角三角形的性质求出EF,再根据平行线的性质和角平分线的定义得到∠BCE=∠BEC,可得BE=BC=10,最后利用平行四边形的面积公式计算即可.【详解】解:过点E作EF⊥BC,垂足为F,∵∠EBC=30°,BE=10,∴EF=BE=5,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DEC=∠BCE,又EC平分∠BED,即∠BEC=∠DEC,∴∠BCE=∠BEC,∴BE=BC=10,∴四边形ABCD的面积===50,故答案为:50.12.(2021·江苏南京·中考真题)如图,将绕点A逆时针旋转到的位置,使点落在上,与交于点E,若,则的长为.【答案】【分析】过点C作CM//交于点M,证明求得,根据AAS证明可求出CM=1,再由CM//证明△,由相似三角形的性质查得结论.【详解】解:过点C作CM//交于点M,∵平行四边形ABCD绕点A逆时针旋转得到平行四边形∴,,∴,∴∴∵∴∴∴∠∵∴∵∴∠∵,∴∴∠∴∠在和中,∴∴∵∴△∴∴∴故答案为:.13.(2023·江苏扬州·中考真题)如图,已知正方形的边长为1,点E、F分别在边上,将正方形沿着翻折,点B恰好落在边上的点处,如果四边形与四边形的面积比为3∶5,那么线段的长为.

【答案】【分析】连接,过点作于点,设,则,则,根据已知条件,分别表示出,证明,得出,在中,,勾股定理建立方程,解方程即可求解.【详解】解:如图所示,连接,过点作于点,

∵正方形的边长为1,四边形与四边形的面积比为3∶5,∴,设,则,则∴即∴∴,∴,∵折叠,∴,∴,∵,∴,又,∴,∴在中,即解得:,故答案为:.14.(2022·江苏南通·中考真题)如图,点O是正方形的中心,.中,过点D,分别交于点G,M,连接.若,则的周长为.【答案】【分析】连接BD,则BD过正方形的中心点O,作FH⊥CD于点H,解直角三角形可得BG=,AG=AB,然后证明△ABG≌△HFD(AAS),可得DH=AG=AB=CD,BC=HF,进而可证△BCM≌△FHM(AAS),得到MH=MC=CD,BM=FM,然后根据等腰三角形三线合一求出DF=FM,则BG=DF=FM=BM=,再根据直角三角形斜边中线的性质和三角形中位线定理分别求出OM、EM和OE即可解决问题.【详解】解:如图,连接BD,则BD过正方形的中心点O,作FH⊥CD于点H,∵,,∴∴AG=AB=,∴BG=,∵∠BEF=90°,∠ADC=90°,∴∠EGD+∠EDG=90°,∠EDG+∠HDF=90°,∴∠EGD=∠HDF∵∠AGB=∠EGD,∴∠AGB=∠HDF,在△ABG和△HFD中,,∴△ABG≌△HFD(AAS),∴AG=DH,AB=HF,∵在正方形中,AB=BC=CD=AD,∠C=90°,∴DH=AG=AB=CD,BC=HF,在△BCM和△FHM中,,∴△BCM≌△FHM(AAS),∴MH=MC=CD,BM=FM,∴DH=MH,∵FH⊥CD,∴DF=FM,∴BG=DF=FM=BM=,∴BF=,∵M是BF中点,O是BD中点,△BEF是直角三角形,∴OM=,EM=,∵BD=,△BED是直角三角形,∴EO=,∴的周长=EO+OM+EM=3++,故答案为:.15.(2023·江苏连云港·中考真题)如图,矩形的顶点在反比例函数的图像上,顶点在第一象限,对角线轴,交轴于点.若矩形的面积是6,,则.

【答案】【分析】方法一:根据的面积为,得出,,在中,,得出,根据勾股定理求得,根据的几何意义,即可求解.方法二:根据已知得出则,即可求解.【详解】解:方法一:∵,∴设,则,∴∵矩形的面积是6,是对角线,∴的面积为,即∴在中,即即解得:在中,∵对角线轴,则,∴,∵反比例函数图象在第二象限,∴,方法二:∵,∴设,则,∴,∴,,∵,∴,故答案为:.16.(2023·江苏南通·中考真题)如图,四边形的两条对角线,互相垂直,,,则的最小值是.

【答案】【分析】设的交点为,的中点分别是,连接,先证,由此得当最小时,最小,再根据“两点之间线段最短”得,再证四边形是矩形,且,根据勾股定理的,进而求得的最小值.【详解】解:设的交点为,的中点分别是,连接,互相垂直,和为直角三角形,且分别为斜边,,,当最小时,最小,再根据“两点之间线段最短”得,当点在线段上时,最小,最小值为线段的长,分别为的中点,是的中位线,,同理,,,,四边形是平行四边形,,,四边形是矩形,在中,,,的最小值为,的最小值为.

故答案为:.17.(2021·江苏宿迁·中考真题)在①AE=CF;②OE=OF;③BE∥DF这三个条件中任选一个补充在下面横线上,并完成证明过程.已知,如图,四边形ABCD是平行四边形,对角线AC、BD相交于点O,点E、F在AC上,(填写序号).求证:BE=DF.注:如果选择多个条件分别解答,按第一个解答计分.【答案】见解析【分析】若选②,即OE=OF;根据平行四边形的性质可得BO=DO,然后即可根据SAS证明△BOE≌△DOF,进而可得结论;若选①,即AE=CF;根据平行四边形的性质得出OE=OF后,同上面的思路解答即可;若选③,即BE∥DF,则∠BEO=∠DFO,再根据平行四边形的性质可证△BOE≌△DOF,于是可得结论.【详解】解:若选②,即OE=OF;证明:∵四边形ABCD是平行四边形,∴BO=DO,∵OE=OF,∠BOE=∠DOF,∴△BOE≌△DOF(SAS),∴BE=DF;若选①,即AE=CF;证明:∵四边形ABCD是平行四边形,∴BO=DO,AO=CO,∵AE=CF,∴OE=OF,又∠BOE=∠DOF,∴△BOE≌△DOF(SAS),∴BE=DF;若选③,即BE∥DF;证明:∵四边形ABCD是平行四边形,∴BO=DO,∵BE∥DF;∴∠BEO=∠DFO,又∠BOE=∠DOF,∴△BOE≌△DOF(AAS),∴BE=DF;18.(2021·江苏连云港·中考真题)如图,点C是的中点,四边形是平行四边形.(1)求证:四边形是平行四边形;(2)如果,求证:四边形是矩形.【答案】(1)见解析;(2)见解析【分析】(1)由平行四边形的性质以及点C是BE的中点,得到AD∥CE,AD=CE,从而证明四边形ACED是平行四边形;(2)由平行四边形的性质证得DC=AE,从而证明平行四边形ACED是矩形.【详解】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC.∵点C是BE的中点,∴BC=CE,∴AD=CE,∵AD∥CE,∴四边形ACED是平行四边形;(2)∵四边形ABCD是平行四边形,∴AB=DC,∵AB=AE,∴DC=AE,∵四边形ACED是平行四边形,∴四边形ACED是矩形.19.(2021·江苏徐州·中考真题)如图,将一张长方形纸片沿折叠,使两点重合.点落在点处.已知,.(1)求证:是等腰三角形;(2)求线段的长.【答案】(1)见解析;(2)3【分析】(1)根据矩形的性质可得,则,因为折叠,,即可得证;(2)设用含的代数式表示,由折叠,,再用勾股定理求解即可【详解】(1)四边形是矩形因为折叠,则是等腰三角形(2)四边形是矩形,设,则因为折叠,则,,在中即解得:20.(2021·江苏淮安·中考真题)已知:如图,在▱ABCD中,点E、F分别在AD、BC上,且BE平分∠ABC,EF∥AB.求证:四边形ABFE是菱形.【答案】见解析【分析】先证四边形ABFE是平行四边形,由平行线的性质和角平分线的性质证AB=AE,依据有一组邻边相等的平行四边形是菱形证明即可.【详解】证明:∵四边形ABCD是平行四边形,∴AD∥BC,又∵EF∥AB,∴四边形ABFE是平行四边形,∵BE平分∠ABC,∴∠ABE=∠FBE,∵AD∥BC,∴∠AEB=∠EBF,∴∠ABE=∠AEB,∴AB=AE,∴平行四边形ABFE是菱形.21.(2023·江苏连云港·中考真题)如图,菱形的对角线相交于点为的中点,,.求的长及的值.

【答案】,【分析】根据菱形的性质得出,中,勾股定理求得的长,根据正切的定义即可求解.【详解】在菱形中,.∵,∴.在中,∵为中点,∴.∵.∴.∴.∴.22.(2021·江苏扬州·中考真题)如图,在中,的角平分线交于点D,.(1)试判断四边形的形状,并说明理由;(2)若,且,求四边形的面积.【答案】(1)菱形,理由见解析;(2)4【分析】(1)根据DE∥AB,DF∥AC判定四边形AFDE是平行四边形,再根据平行线的性质和角平分线的定义得到∠EDA=∠EAD,可得AE=DE,即可证明;(2)根据∠BAC=90°得到菱形AFDE是正方形,根据对角线AD求出边长,再根据面积公式计算即可.【详解】解:(1)四边形AFDE是菱形,理由是:∵DE∥AB,DF∥AC,∴四边形AFDE是平行四边形,∵AD平分∠BAC,∴∠FAD=∠EAD,∵DE∥AB,∴∠EDA=∠FAD,∴∠EDA=∠EAD,∴AE=DE,∴平行四边形AFDE是菱形;(2)∵∠BAC=90°,∴四边形AFDE是正方形,∵AD=,∴AF=DF=DE=AE==2,∴四边形AFDE的面积为2×2=4.23.(2021·江苏盐城·中考真题)如图,、、分别是各边的中点,连接、、.(1)求证:四边形为平行四边形;(2)加上条件后,能使得四边形为菱形,请从①;②平分;③,这三个条件中选择一个条件填空(写序号),并加以证明.【答案】(1)见解析;(2)②或③,见解析【分析】(1)先证明,根据平行的传递性证明,即可证明四边形为平行四边形.(2)选②平分,先证明,由四边形是平行四边形,得出,即可证明平行四边形是菱形.选③,由且,得出,即可证明平行四边形是菱形.【详解】(1)证明:已知、是、中点∴又∵、是、的中点∴∵∴∴四边形为平行四边形(2)证明:选②平分∵平分∴又∵平行四边形∴∴∴∴平行四边形是菱形选③∵且且又∵∴∴平行四边形为菱形故答案为:②或③24.(2021·江苏镇江·中考真题)如图,四边形ABCD是平行四边形,延长DA,BC,使得AE=CF,连接BE,DF.(1)求证:;(2)连接BD,∠1=30°,∠2=20°,当∠ABE=°时,四边形BFDE是菱形.【答案】(1)见解析;(2)当∠ABE=10°时,四边形BFDE是菱形【分析】(1)根据平行四边形的性子和“SAS”可证△ABE≌△CDF;(2)先证明四边形BFDE是平行四边形,再通过证明BE=DE,可得结论.【详解】解:(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠BAD=∠BCD,∴∠1=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)当∠ABE=10°时,四边形BFDE是菱形,理由如下:∵△ABE≌△CDF,∴BE=DF,AE=CF,∴BF=DE,∴四边形BFDE是平行四边形,∵∠1=30°,∠2=20°,∴∠ABD=∠1∠2=10°,∴∠DBE=20°,∴∠DBE=∠EDB=20°,∴BE=DE,∴平行四边形BFDE是菱形,故答案为10.25.(2022·江苏连云港·中考真题)如图,四边形为平行四边形,延长到点,使,且.(1)求证:四边形为菱形;(2)若是边长为2的等边三角形,点、、分别在线段、、上运动,求的最小值.【答案】(1)证明见解析(2)【分析】(1)先根据四边形为平行四边形的性质和证明四边形为平行四边形,再根据,即可得证;(2)先根据菱形对称性得,得到,进一步说明的最小值即为菱形的高,再利用三角函数即可求解.【详解】(1)证明:∵四边形是平行四边形,∴,,∵,∴,又∵点在的延长线上,∴,∴四边形为平行四边形,又∵,∴四边形为菱形.(2)解:如图,由菱形对称性得,点关于的对称点在上,∴,当、、共线时,,过点作,垂足为,∵,∴的最小值即为平行线间的距离的长,∵是边长为2的等边三角形,∴在中,,,,∴,∴的最小值为.26.(2022·江苏苏州·中考真题)如图,将矩形ABCD沿对角线AC折叠,点B的对应点为E,AE与CD交于点F.(1)求证:;(2)若,求的度数.【答案】(1)见解析(2)【分析】(1)由矩形与折叠的性质可得,,从而可得结论;(2)先证明,再求解,结合对折的性质可得答案.【详解】(1)证明:将矩形ABCD沿对角线AC折叠,则,.在△DAF和△ECF中,∴.(2)解:∵,∴.∵四边形ABCD是矩形,∴.∴,∵,∴.27.(2022·江苏无锡·中考真题)如图,已知四边形ABCD为矩形,,点E在BC上,,将△ABC沿AC翻折到△AFC,连接EF.(1)求EF的长;(2)求sin∠CEF的值.【答案】(1)(2)【分析】(1)先由可求得的长度,再由角度关系可得,即可求得的长;(2)过F作于,利用勾股定理列方程,即可求出的长度,同时求出的长度,得出答案.【详解】(1)设,则,∴,在中,,∴,∴,∴,,∵,∴,∵,∴,∴,由折叠可知,∴,,∴,∴,在中,.(2)过F作FM⊥BC于M,∴∠FME=∠FMC=90°,设EM=a,则EC=3a,在中,,在中,,∴,∴,∴,∴,∴,∴.28.(2022·江苏泰州·中考真题)如图,线段DE与AF分别为△ABC的中位线与中线.(1)求证:AF与DE互相平分;(2)当线段AF与BC满足怎样的数量关系时,四边形ADFE为矩形?请说明理由.【答案】(1)见解析(2)AF=BC,理由见解析【分析】(1)易知点D,E,F分别是AB,AC,BC的中点,所以线段DF与EF也为△ABC的中位线,由中位线定理证得四边形ADFE是平行四边形,因为平行四边形的对角线相互平分,此题可证;(2)根据对角线相等的平行四边形是矩形,结合已知条件可知,当AF=BC时,平行四边形ADFE为矩形.【详解】(1)证明:∵线段DE与AF分别为△ABC的中位线与中线,∴D,E,F分别是AB,AC,BC的中点,∴线段DF与EF也为△ABC的中位线,∴DFAC,EFAB,∴四边形ADFE是平行四边形,∴AF与DE互相平分.(2)解:当AF=BC时,四边形ADFE为矩形,理由如下:∵线段DE为△ABC的中位线,∴DE=BC,由(1)知四边形ADFE为平行四边形,若ADFE为矩形,则AF=DE,∴当AF=BC时,四边形ADFE为矩形.29.(2022·江苏常州·中考真题)在四边形中,是边上的一点.若,则点叫做该四边形的“等形点”.(1)正方形_______“等形点”(填“存在”或“不存在”);(2)如图,在四边形中,边上的点是四边形的“等形点”.已知,,,连接,求的长;(3)在四边形中,EH//FG.若边上的点是四边形的“等形点”,求的值.【答案】(1)不存在,理由见详解(2)(3)1【分析】(1)根据“等形点”的概念,采用反证法即可判断;(2)过A点作AM⊥BC于点M,根据“等形点”的性质可得AB=CD=,OA=OC=5,OB=7=OD,设MO=a,则BM=BOMO=7a,在Rt△ABM和Rt△AOM中,利用勾股定理即可求出AM,则在Rt△AMC中利用勾股定理即可求出AC;(3)根据“等形点”的性质可得OF=OH,OE=OG,∠EOF=∠GOH,再根据,可得∠EOF=∠OEH,∠GOH=∠EHO,即有∠OEH=∠OHE,进而有OE=OH,可得OF=OG,则问题得解.【详解】(1)不存在,理由如下:假设正方形ABCD存在“等形点”点O,即存在△OAB≌△OCD,∵在正方形ABCD中,点O在边BC上,∴∠ABO=90°,∵△OAB≌△OCD,∴∠ABO=∠CDO=90°,∴CD⊥DO,∵CD⊥BC,∴,∵O点在BC上,∴DO与BC交于点O,∴假设不成立,故正方形不存在“等形点”;(2)如图,过A点作AM⊥BC于点M,如图,∵O点是四边形ABCD的“等形点”,∴△OAB≌△OCD,∴AB=CD,OA=OC,OB=OD,∠AOB=∠COD,∵,OA=5,BC=12,∴AB=CD=,OA=OC=5,∴OB=BCOC=125=7=OD,∵AM⊥BC,∴∠AMO=90°=∠AMB,∴设MO=a,则BM=BOMO=7a,∴在Rt△ABM和Rt△AOM中,,∴,即,解得:,即,∴MC=MO+OC=,∴在Rt△AMC中,,即AC的长为;(3)如图,∵O点是四边形EFGH的“等形点”,∴△OEF≌△OGH,∴OF=OH,OE=OG,∠EOF=∠GOH,∵,∴∠EOF=∠OEH,∠GOH=∠EHO,∴根据∠EOF=∠GOH有∠OEH=∠OHE,∴OE=OH,∵OF=OH,OE=OG,∴OF=OG,∴.【点睛】本题考查了全等三角形的性质、勾股定理、正方形的性质、平行的性质等知识,充分利用全等三角形的性质是解答本题的关键.30.(2022·江苏南京·中考真题)如图,,平分,交于点,过点作,交于点,垂足为,连接,求证:四边形是菱形.

【答案】见解析【分析】先证明四边形是平行四边形,再根据邻边,即可证明平行四边形是菱形.【详解】解:证明:∵平分,,∴,.∴.∴.又∵于点,∴.在和中,,∴.∴.∴四边形是平行四边形.又∵,∴平行四边形是菱形.

【点睛】本题主要考查了菱形的判定,涉及平行四边形的判定和性质,全等三角形的判定和性质,角平分线的性质,平行线的性质等知识,熟练掌握菱形的判定方法是解题的关键.31.(2023·江苏徐州·中考真题)【阅读理解】如图1,在矩形中,若,由勾股定理,得,同理,故.【探究发现】如图2,四边形为平行四边形,若,则上述结论是否依然成立?请加以判断,并说明理由.【拓展提升】如图3,已知为的一条中线,.求证:.【尝试应用】如图4,在矩形中,若,点P在边上,则的最小值为_______.

【答案】探究发现:结论依然成立,理由见解析;拓展提升:证明见解析;尝试应用:【分析】探究发现:作于点E,作交的延长线于点F,则,证明,,利用勾股定理进行计算即可得到答案;拓展提升:延长到点C,使,证明四边形是平行四边形,由【探究发现】可知,,则,得到,即可得到结论;尝试应用:由四边形是矩形,,得到,,设,,由勾股定理得到,根据二次函数的性质即可得到答案.【详解】探究发现:结论依然成立,理由如下:作于点E,作交的延长线于点F,则,

∵四边形为平行四边形,若,∴,∵,,∴,∴,∴,∴;拓展提升:延长到点C,使,

∵为的一条中线,∴,∴四边形是平行四边形,∵.∴由【探究发现】可知,,∴,∴,∴;尝试应用:∵四边形是矩形,,∴,,设,则,∴,∵,∴抛物线开口向上,∴当时,的最小值是故答案为:【点睛】此题考查了二次函数的应用、勾股定理、平行四边形的判定和性质、矩形的性质等知识,熟练掌握勾股定理和数形结合是解题的关键.32.(2023·江苏宿迁·中考真题)如图,在矩形中,,,垂足分别为E、F.求证:.【答案】证明见解析【分析】根据定理证出,再根据全等三角形的性质即可得证.【详解】证明:四边形是矩形,,,,,,在和中,,,.【点睛】本题考查了矩形的性质、三角形全等的判定与性质等知识点,熟练掌握矩形的性质是解题关键.33.(2021·江苏苏州·中考真题)如图,在矩形中,线段、分别平行于、,它们相交于点,点、分别在线段、上,,,连接、,与交于点.已知.设,.(1)四边形的面积______四边形的面积(填“”、“”或“”);(2)求证:;(3)设四边形的面积为,四边形的面积为,求的值.【答案】(1)=;(2)见解析;(3)【分析】(1)由四边形为矩形及,,证明四边形为矩形,四边形、、均为矩形.再利用矩形的面积公式求解四边形的面积与四边形的面积,从而可得答案;(2)由,,结合,,结合,证明.可得.从而可得结论;(3)解法一:连接,,证明.可得.再证明.可得,从而可得答案;解法二:连接、.证明四边形的四边形.从而可得答案.【详解】解:(1)∵四边形为矩形,∴.∵,∴,.∵,∴.∴四边形为矩形.同理可得:四边形、、均为矩形.∵,,,∴,,,.∴四边形的面积,四边形的面积..四边形的面积四边形的面积.(2)∵,,由(1)中,,∴,即,∵,∴.∴.∵,∴.(3)解法一:连接,,∵,,∴.∵,∴.∴,.由(2),得,∴.∵,∴.∴.∵,∴.∴.解法二:连接、.∵,,∴.∵,∴.∴,,.由(2)中,得,∴.∵,∴.∴,,.∴,,.又,,∴四边形的四边形.∴.【点睛】本题考查的是矩形的性质,矩形的判定,相似三角形的判定与性质,相似四边形的判定与性质,构建相似三角形的模型是解题的关键.34.(2021·江苏宿迁·中考真题)已知正方形ABCD与正方形AEFG,正方形AEFG绕点A旋转一周.(1)如图①,连接BG、CF,求的值;(2)当正方形AEFG旋转至图②位置时,连接CF、BE,分别取CF、BE的中点M、N,连接MN、试探究:MN与BE的关系,并说明理由;(3)连接BE、BF,分别取BE、BF的中点N、Q,连接QN,AE=6,请直接写出线段QN扫过的面积.【答案】(1);(2);(3)【分析】(1)由旋转的性质联想到连接,证明即可求解;(2)由M、N分别是CF、BE的中点,联想到中位线,故想到连接BM并延长使BM=MH,连接FH、EH,则可证即可得到,再由四边形内角和为可得,则可证明,即是等腰直角三角形,最后利用中位线的性质即可求解;(3)Q、N两点因旋转位置发生改变,所以Q、N两点的轨迹是圆,又Q、N两点分别是BF、BE中点,所以想到取AB的中点O,结合三角形中位线和圆环面积的求解即可解答.【详解】解:(1)连接四边形ABCD和四边形AEFG是正方形分别平分即且都是等腰直角三角形(2)连接BM并延长使BM=MH,连接FH、EH是CF的中点又在四边形BEFC中又即即又四边形ABCD和四边形AEFG是正方形三角形BEH是等腰直角三角形M、N分别是BH、BE的中点(3)取AB的中点O,连接OQ、ON,连接AF在中,O、Q分别是AB、BF的中点同理可得所以QN扫过的面积是以O为圆心,和为半径的圆环的面积.【点睛】本题考查旋转的性质、三角形相似、三角形全等、正方形的性质、中位线的性质与应用和动点问题,属于几何综合题,难度较大.解题的关键是通过相关图形的性质做出辅助线.35.(2021·江苏徐州·中考真题)如图1,正方形的边长为4,点在边上(不与重合),连接.将线段绕点顺时针旋转90°得到,将线段绕点逆时针旋转90°得到.连接.(1)求证:①的面积;②;(2)如图2,的延长线交于点,取的中点,连接,求的取值范围.【答案】(1)①见详解;②见详解;(2)4≤MN<【分析】(1)①过点F作FG⊥AD交AD的延长线于点G,证明,即可得到结论;②过点E作EH⊥DA交DA的延长线于点H,证明,结合,可得GD=EH,同理:FG=AH,从而得,进而即可得到结论;(2)过点F作FG⊥AD交AD的延长线于点G,过点E作EH⊥DA交DA的延长线于点H,可得∠AMD=90°,MN=EF,HG=2AD=8,EH+FG=AD=4,然后求出当点P与点D重合时,EF最大值=,当点P与AD的中点重合时,EF最小值=HG=8,进而即可得到答案.【详解】(1)①证明:过点F作FG⊥AD交AD的延长线于点G,∵∠FPG+∠PFG=90°,∠FPG+∠CPD=90°,∴∠FPG=∠CPD,又∵∠PGF=∠CDP=90°,PC=PF,∴(AAS),∴FG=PD,∴的面积;②过点E作EH⊥DA交DA的延长线于点H,∵∠EPH+∠PEH=90°,∠EPH+∠BPA=90°,∴∠PEH=∠BPA,又∵∠PHE=∠BAP=90°,PB=PE,∴(AAS),∴EH=PA,由①得:FG=PD,∴EH+FG=PA+PD=AD=CD,由①得:,∴PG=CD,∴PD+GD=CD=EH+FG,∴FG+GD=EH+FG,∴GD=EH,同理:FG=AH,又∵∠AHE=∠FGD,∴,∴;(2)过点F作FG⊥AD交AD的延长线于点G,过点E作EH⊥DA交DA的延长线于点H,由(1)得:,∴∠HAE=∠GFD,∵∠GFD+∠GDF=90°,∴∠HAE+∠GDF=90°,∵∠HAE=∠MAD,∠GDF=∠MDA,∴∠MAD+∠MDA=90°,∴∠AMD=90°,∵点N是EF的中点,∴MN=EF,∵EH=DG=AP,AH=FG=PD,∴HG=AH+DG+AD=PD+AP+AD=2AD=8,EH+FG=AP+PD=AD=4,当点P与点D重合时,FG=0,EH=4,HG=8,此时EF最大值=,当点P与AD的中点重合时,FG=2,EH=2,HG=8,此时EF最小值=HG=8,∴的取值范围是:4≤MN<.【点睛】本题主要考查全等三角形的判定和性质,正方形的性质,勾股定理,旋转的性质,添加辅助线,构造直角全等的直角三角形,是解题的关键.36.(2021·江苏南通·中考真题)如图,正方形中,点E在边上(不与端点A,D重合),点A关于直线的对称点为点F,连接,设.(1)求的大小(用含的式子表示);(2)过点C作,垂足为G,连接.判断与的位置关系,并说明理由;(3)将绕点B顺时针旋转得到,点E的对应点为点H,连接,.当为等腰三角形时,求的值.【答案】(1).(2)DG//CF.理由见解析.(3).【分析】(1)作辅助线BF,用垂直平分线的性质,推导边相等、角相等.再用三角形内角和为算出.(2)作辅助线BF、AC,先导角证明是等腰直角三角形、是等腰直角三角形.再证明、,最后用内错角相等,两直线平行,证得DG//CF.(3)为等腰三角形,要分三种情况讨论:①FH=BH②BF=FH③BF=BH,根据题目具体条件,舍掉了②、③种,第①种用正弦函数定义求出比值即可.【详解】(1)解:连接BF,设AF和BE相交于点N.点A关于直线BE的对称点为点FBE是AF的垂直平分线,AB=BF四边形ABCD是正方形AB=BC,.(2)位置关系:平行.理由:连接BF,AC,DG设DC和FG的交点为点M,AF和BE相交于点N由(1)可知,是等腰直角三角形四边形ABCD是正方形是等腰直角三角形垂直平分AF在和中,在和中,CF//DG(3)为等腰三角形有三种情况:①FH=BH②BF=FH③BF=BH,要分三种情况讨论:①当FH=BH时,作于点M由(1)可知:AB=BF,四边形ABCD是正方形设AB=BF=BC=a将绕点B顺时针旋转得到FH=BH是等腰三角形,在和中,BM=AE=②当BF=FH时,设FH与BC交点为O绕点B顺时针旋转得到由(1)可知:此时,与重合,与题目不符,故舍去③当BF=BH时,由(1)可知:AB=BF设AB=BF=a四边形ABCD是正方形AB=BC=aBF=BHBF=BH=BC=a而题目中,BC、BH分别为直角三角形BCH的直角边和斜边,不能相等,与题目不符,故舍去.故答案为:【点睛】本题考查了三角形内角和定理(三角形内角和为)、平行线证明(内错角相等,两直线平行)、相似三角形证明(两组对应角分别相等的两个三角形相似,两边对应成比例且夹角相等的两个三角形相似)、等腰直角三角形三边比例关系()、正弦函数定义式(对边:斜边).37.(2021·江苏镇江·中考真题)如图1,∠A=∠B=∠C=∠D=∠E=∠F=90°,AB,FE,DC为铅直方向的边,AF,ED,BC为水平方向的边,点E在AB,CD之间,且在AF,BC之间,我们称这样的图形为“L图形”,记作“L图形ABC﹣DEF”.若直线将L图形分成面积相等的两个图形,则称这样的直线为该L图形的面积平分线.【活动】小华同学给出了图1的面积平分线的一个作图方案:如图2,将这个L图形分成矩形AGEF、矩形GBCD,这两个矩形的对称中心O1,O2所在直线是该L图形的面积平分线.请用无刻度的直尺在图1中作出其他的面积平分线.(作出一种即可,不写作法,保留作图痕迹)【思考】如图3,直线O1O2是小华作的面积平分线,它与边BC,AF分别交于点M,N,过MN的中点O的直线分别交边BC,AF于点P,Q,直线PQ(填“是”或“不是”)L图形ABCDEF的面积平分线.【应用】在L图形ABCDEF形中,已知AB=4,BC=6.(1)如图4,CD=AF=1.①该L图形的面积平分线与两条水平的边分别相交于点P,Q,求PQ长的最大值;②该L图形的面积平分线与边AB,CD分别相交于点G,H,当GH的长取最小值时,BG的长为.(2)设=t(t>0),在所有的与铅直方向的两条边相交的面积平分线中,如果只有与边AB,CD相交的面积平分线,直接写出t的取值范围.【答案】【活动】见解析;【思考】是;【应用】(1)①;②;(2)<t<【分析】[活动]如图1,根据题意把原本图形分成左右两个矩形,这两个矩形的对称中心O1,O2所在直线是该L图形的面积平分线;[思考]如图2,证明△OQN≌△OPM(AAS),根据割补法可得直线PQ是L图形ABCDEF的面积平分线;[应用](1)①建立平面直角坐标系,分两种情况:如图3﹣1和3﹣2,根据中点坐标公式和待定系数法可得面积平分线的解析式,并计算P和Q的坐标,利用两点的距离公式可得PQ的长,并比较大小可得结论;②当GH⊥AB时,GH最小,设BG=x,根据面积相等列方程,解出即可;(2)如图5,由已知得:CD=tAF,直线DE将图形分成上下两个矩形,当上矩形面积小于下矩形面积时,在所有的与铅直方向的两条边相交的面积平分线中,只有与边AB,CD相交的面积平分线,列不等式可得t的取值.【详解】解:【活动】如图1,直线O1O2是该L图形的面积平分线;【思考】如图2,∵∠A=∠B=90°,∴AF∥BC,∴∠NQO=∠MPO,∵点O是MN的中点,∴ON=OM,在△OQN和△OPM中,,∴△OQN≌△OPM(AAS),∴S△OQN=S△OPM,∵S梯形ABMN=SMNFEDC,∴S梯形ABMN﹣S△OPM=SMNFEDC﹣S△OQN,即SABPON=SCDEFQOM,∴SABPON+S△OQN=SCDEFQOM+S△OPM,即S梯形ABPQ=SCDEFQP,∴直线PQ是L图形ABCDEF的面积平分线.故答案为:是;【应用】(1)①如图3,当P与B重合时,PQ最大,过点Q作QH⊥BC于H,L图形ABCDEF的面积=4×6(41)×(61)=9,∵PQ是L图形ABCDEF的面积平分线,∴梯形CDQP的面积=×(DQ+BC)×CD=,即×(DQ+6)×1=,∴DQ=CH=3,∴PH=63=3,∵QH=CD=1,由勾股定理得:PQ=;∴PQ长的最大值为;②如图4,当GH⊥AB时GH最短,过点E作EM⊥AB于M,设BG=x,则MG=1﹣x,根据上下两部分面积相等可知,6x=(4﹣1)×1+(1﹣x)×6,解得x=,即BG=;故答案为:;(2)∵=t(t>0),∴CD=tAF,在所有的与铅直方向的两条边相交的面积平分线中,只有与边AB,CD相交的面积平分线,如图5,直线DE将图形分成上下两个矩形,当上矩形面积小于下矩形面积时,在所有的与铅直方向的两条边相交的面积平分线中,只有与边AB,CD相交的面积平分线,即(4﹣tAF)•AF<6t•AF,∴,∵0<AF<6,∴0<﹣6<6,∴.故答案为:<t<.【点睛】本题是四边形的综合题,考查了应用与设计作图,矩形的性质和判定,四边形面积的平分,三角形全等的性质和判定等知识,并结合平面直角坐标系计算线段的长,明确面积平分线的画法,并熟练掌握矩形面积平分线是过对角线交点的性质是解题的关键.38.(2022·江苏盐城·中考真题)【经典回顾】梅文鼎是我国清初著名的数学家,他在《勾股举隅》中给出多种证明勾股定理的方法图1是其中一种方法的示意图及部分辅助线.在中,,四边形、和分别是以的三边为一边的正方形.延长和,交于点,连接并延长交于点,交于点,延长交于点.(1)证明:;(2)证明:正方形的面积等于四边形的面积;(3)请利用(2)中的结论证明勾股定理.(4)【迁移拓展】如图2,四边形和分别是以的两边为一边的平行四边形,探索在下方是否存在平行四边形,使得该平行四边形的面积等于平行四边形、的面积之和.若存在,作出满足条件的平行四边形(保留适当的作图痕迹);若不存在,请说明理由.【答案】(1)见解析(2)见解析(3)见解析(4)存在,见解析【分析】(1)根据正方形的性质和SAS证明△ACB≌△HCG,可得结论;(2)证明S△CHG=S△CHL,所以S△AMI=S△CHL,由此可得结论;(3)证明正方形ACHI的面积+正方形BFGC的面积=▱ADJK的面积+▱KJEB的面积=正方形ADEB,可得结论;(4)如图2,延长IH和FG交于点L,连接LC,以A为圆心CL为半径画弧交IH于一点,过这一点和A作直线,以A为圆心,AI为半径作弧交这直线于D,分别以A,B为圆心,以AB,AI为半径画弧交于E,连接AD,DE,BE,则四边形ADEB即为所求.【详解】(1)证明:如图1,连接HG,∵四边形ACHI,ABED和BCGF是正方形,∴AC=CH,BC=CG,∠ACH=∠BCG=90°,AB=AD,∵∠ACB=90°,∴∠GCH=360°﹣90°﹣90°﹣90°=90°,∴∠GCH=∠ACB,∴△ACB≌△HCG(SAS),∴GH=AB=AD,∵∠GCH=∠CHI=∠CGL=90°,∴四边形CGLH是矩形,∴CL=GH,∴AD=LC;(2)证明:∵∠CAI=∠BAM=90°,∴∠BAC=∠MAI,∵AC=AI,∠ACB=∠I=90°,∴△ABC≌△AMI(ASA),由(1)知:△ACB≌△HCG,∴△AMI≌△HGC,∵四边形CGLH是矩形,∴S△CHG=S△CHL,∴S△AMI=S△CHL,∴正方形ACHI的面积等于四边形ACLM的面积;(3)证明:由正方形可得,又,所以四边形是平行四边形,由(2)知,四边形是平行四边形,由(1)知,,所以,延长交于,同理有,所以.所以.(4)解:如图为所求作的平行四边形.【点睛】本题是四边形的综合题,考查的是全等三角形的性质和判定,平行四边形的性质和判定,矩形的性质和判定,正方形的性质,勾股定理的证明等知识;熟练掌握正方形的性质和全等三角形的判定与性质,根据图形面积的关系证出勾股定理是解题的关键,属于中考常考题型.39.(2022·江苏南通·中考真题)如图,矩形中,,点E在折线上运动,将绕点A顺时针旋转得到,旋转角等于,连接.(1)当点E在上时,作,垂足为M,求证;(2)当时,求的长;(3)连接,点E从点B运动到点D的过程中,试探究的最小值.【答案】(1)见详解(2)或(3)【分析】(1)证明即可得证.(2)分情况讨论,当点E在BC上时,借助,在中求解;当点E在CD上时,过点E作EG⊥AB于点G,FH⊥AC于点H,借助并利用勾股定理求解即可.(3)分别讨论当点E在BC和CD上时,点F所在位置不同,DF的最小值也不同,综合比较取最小即可.【详解】(1)如图所示,由题意可知,,,,由旋转性质知:AE=AF,在和中,,,.(2)当点E在BC上时,在中,,,则,在中,,,则,由(1)可得,,在中,,,则,当点E在CD上时,如图,过点E作EG⊥AB于点G,FH⊥AC于点H,同(1)可得,,由勾股定理得;故CF的长为或.(3)如图1所示,当点E在BC边上时,过点D作于点H,由(1)知,,故点F在射线MF上运动,且点F与点H重合时,DH的值最小.在与中,,,,即,,,,在与中,,,,即,,故的最小值;如图2所示,当点E在线段CD上时,将线段AD绕点A顺时针旋转的度数,得到线段AR,连接FR,过点D作,,由题意可知,,在与中,,,,故点F在RF上运动,当点F与点K重合时,DF的值最小;由于,,,故四边形DQRK是矩形;,,,,故此时DF的最小值为;由于,故DF的最小值为.【点睛】本题考查矩形的性质、全等三角形的判定和性质、相似三角形的性质和判定、勾股定理、解直角三角形,解决本题的关键是各性质定理的综合应用.40.(2022·江苏镇江·中考真题)已知,点、、、分别在正方形的边、、、上.(1)如图1,当四边形是正方形时,求证:;(2)如图2,已知,,当、的大小有_________关系时,四边形是矩形;(3)如图3,,、相交于点,,已知正方形的边长为16,长为20,当的面积取最大值时,判断四边形是怎样的四边形?证明你的结论.【答案】(1)见解析(2)(3)平行四边形,证明见解析【分析】(1)利用平行四边形的性质证得,根据角角边证明.(2)当,证得,是等腰直角三角形,∠HEF=∠EFG=90°,即可证得四边形EFGH是矩形.(3)利用正方形的性质证得为平行四边形,过点作,垂足为点,交于点,由平行线分线段成比例,设,,,则可表示出,从而把△OEH的面积用x的代数式表示出来,根据二次函数求出最大值,则可得OE=OG,OF=OH,即可证得平行四边形.【详解】(1)∵四边形为正方形,∴,∴.∵四边形为正方形,∴,,∴,∴.在和中,∵,,,∴.∴.∴;(2);证明如下:∵四边形为正方形,∴,AB=BC=AD=CD,∵AE=AH,CF=CG,AE=CF,∴AH=CG,∴,∴EH=FG.∵AE=CF,∴AB-AE=BC-CF,即BE=BF,∴是等腰直角三角形,∴∠BEF=∠BFE=45°,∵AE=AH,CF=CG,∴∠AEH=∠CFG=45°,∴∠HEF=∠EFG=90°,∴EH∥FG,∴四边形EFGH是矩形.(3)∵四边形为正方形,∴.∵,,∴四边形为平行四边形.∴.∴.过点作,垂足为点,交于点,∴.∵,设,,,则,∴.∴.∴当时,的面积最大,∴,,∴四边形是平行四边形.【点睛】此题考查了正方形的性质,矩形的判定和平行四边形的性质与判定,平行线分线段成比例定理,全等三角形的判定与性质,等腰三角形的性质,二次函数的最值,有一定的综合性,解题的关键是熟悉这些知识并灵活运用.41.(2023·江苏连云港·中考真题)【问题情境

建构函数】(1)如图1,在矩形中,是的中点,,垂足为.设,试用含的代数式表示.

【由数想形

新知初探】(2)在上述表达式中,与成函数关系,其图像如图2所示.若取任意实数,此时的函数图像是否具有对称性?若有,请说明理由,并在图2上补全函数图像.

【数形结合

深度探究】(3)在“取任意实数”的条件下,对上述函数继续探究,得出以下结论:①函数值随的增大而增大;②函数值的取值范围是;③存在一条直线与该函数图像有四个交点;④在图像上存在四点,使得四边形是平行四边形.其中正确的是__________.(写出所有正确结论的序号)【抽象回归

拓展总结】(4)若将(1)中的“”改成“”,此时关于的函数表达式是__________;一般地,当取任意实数时,类比一次函数、反比例函数、二次函数的研究过程,探究此类函数的相关性质(直接写出3条即可).【答案】(1);(2)取任意实数时,对应的函数图像关于原点成中心对称,见解析;(3)①④;(4),见解析【分析】(1)证明,得出,进而勾股定理求得,即,整理后即可得出函数关系式;(2)若为图像上任意一点,则.设关于原点的对称点为,则.当时,可求得.则也在的图像上,即可得证,根据中心对称的性质补全函数图象即可求解;(3)根据函数图象,以及中心对称的性质,逐项分析判断即可求解;(4)将(1)中的4换成,即可求解;根据(2)的图象探究此类函数的相关性质,即可求解.【详解】(1)在矩形中,,∴.∵,∴,∴.∴.∴,∴.∵,点是的中点,∴.在中,,∴.∴.∴关于的表达式为:.(2)取任意实数时,对应的函数图像关于原点成中心对称.理由如下:若为图像上任意一点,则.设关于原点的对称点为,则.当时,.∴也在的图像上.∴当取任意实数时,的图像关于原点对称.函数图像如图所示.

(3)根据函数图象可得①函数值随的增大而增大,故①正确,②由(1)可得函数值,故函数值的范围为,故②错误;③根据中心对称的性质,不存在一条直线与该函数图像有四个交点,故③错误;④因为平行四边形是中心对称图形,则在图像上存在四点,使得四边形是平行四边形,故④正确;故答案为:①④.(4)关于的函数表达式为;当取任意实数时,有如下相关性质:当时,图像经过第一、三象限,函数值随的增大而增大,的取值范围为;当时,图像经过第二、四象限,函数值随的增大而减小,的取值范围为;函数图像经过原点;函数图像关于原点对称;【点睛】本题考查了相似三角形的性质,中心对称的性质,根据函数图象获取信息,根据题意求得解析式是解题的关键.42.(2023·江苏无锡·中考真题)如图,四边形是边长为的菱形,,点为的中点,为线段上的动点,现将四边形沿翻折得到四边形.

(1)当时,求四边形的面积;(2)当点在线段上移动时,设,四边形的面积为,求关于的函数表达式.【答案】(1)(2)【分析】(1)连接、,根据菱形的性质以及已知条件可得为等边三角形,根据,可得为等腰直角三角形,则,,根据翻折的性质,可得,,则,;同理,,;进而根据,即可求解;(2)等积法求得,则,根据三角形的面积公式可得,证明,根据相似三角形的性质,得出,根据即可求解.【详解】(1)如图,连接、,四边形为菱形,,,为等边三角形.为中点,,,,.,为等腰直角三角形,,,翻折,,,,;.同理,,,∴;(2)如图,连接、,延长交于点.,,,.∵,,.,则,,,.∵,.【点睛】本题考查了菱形与折叠问题,勾股定理,折叠的性质,相似三角形的性质与判定,熟练掌握菱形的性质以及相似三角形的性质与判定是解题的关键.43.(2023·江苏泰州·中考真题)如图,矩形是一张纸,其中,小天用该纸玩折纸游戏.游戏1

折出对角线,将点B翻折到上的点E处,折痕交于点G.展开后得到图①,发现点F恰为的中点.游戏2

在游戏1的基础上,将点C翻折到上,折痕为;展开后将点B沿过点F的直线翻折到上的点H处;再展开并连接后得到图②,发现是一个特定的角.(1)请你证明游戏1中发现的结论;(2)请你猜想游戏2中的度数,并说明理由.【答案】(1)证明见详解(2),理由见解析【分析】(1)由折叠的性质可得,根据题意可得,再设,然后表示出、,再由锐角三角函数求出即可;(2)由折叠的性质可知,,从而可得出,进而得到,,由(1)知,可得,在中求出的正切值即可解答.【详解】(1)证明:由折叠的性质可得,,四边形是矩形,,,,设,则,,,即,,解得,根据勾股定理可得,,即,.解得,,,点为的中点.(2)解:,理由如下:连接,如图:由折叠的性质可知,,,,,,,由(1)知,可得,,设,则,,,,在中,,,,.【点睛】本题考查矩形的性质,折叠的性质,勾股定理,锐角三角函数,熟练掌握以上知识是解题关键.44.(2023·江苏·中考真题)对于平面内的一个四边形,若存在点,使得该四边形的一条对角线绕点旋转一定角度后能与另一条对角线重合,则称该四边形为“可旋四边形”,点是该四边形的一个“旋点”.例如,在矩形中,对角线、相交于点,则点是矩形的一个“旋点”.

(1)若菱形为“可旋四边形”,其面积是,则菱形的边长是_______;(2)如图1,四边形为“可旋四边形”,边的中点是四边形的一个“旋点”.求的度数;(3)如图2,在四边形中,,与不平行.四边形是否为“可旋四边形”?请说明理由.【答案】(1)(2)(3)是【分析】(1)根据“可旋四边形”的性质可得,根据正方形的判定可得菱形为正方形,根据正方形四条边都相等的性质即可求解;(2)连接,根据“可旋四边形”的性质和题意可得,,推得,根据等边对等角可得,,根据三角形内角和定理即可求出结果;分别作,的垂直平分线,交于点,连接,,,,根据垂直平分线的性质可得,,根据全等三角形的判定和性质可得,求得,即可证明四边形是“可旋四边形”.【详解】(1)解:∵菱形为“可旋四边形”,则菱形的一条对角线绕点旋转一定角度后能与另一条对角线重合,即,则菱形为正方形,∵菱形的面积为,∴菱形的边长是.故答案为:.(2)解:连接,如图:

∵四边形为“可旋四边形”,且点是四边形的一个“旋点”,∴,∴,∵点是边的中点,∴,∴,∴,∵,即,∴.(3)解:四边形是“可旋四边形”;理由如下:分别作,的垂直平分线,交于点,连接,,,,如图:

∵点在线段和线段的垂直平分线上,∴,,在和中,,∴,∴,则,即,∴四边形是“可旋四边形”.【点睛】本题考查了正方形的判定和性质,等边对等角,三角形内角和定理,垂直平分线的性质,全等三角形的判定和性质,解题的关键是做辅助线,构建全等三角形.45.(2023·江苏·中考真题)综合与实践定义:将宽与长的比值为(为正整数)的矩形称为阶奇妙矩形.(1)概念理解:当时,这个矩形为1阶奇妙矩形,如图(1),这就是我们学习过的黄金矩形,它的宽()与长的比值是_________.(2)操作验证:用正方形纸片进行如下操作(如图(2)):第一步:对折正方形纸片,展开,折痕为,连接;第二步:折叠纸片使落在上,点的对应点为点,展开,折痕为;第三步:过点折叠纸片,使得点分别落在边上,展开,折痕为.试说明:矩形是1阶奇妙矩形.

(3)方法迁移:用正方形纸片折叠出一个2阶奇妙矩形.要求:在图(3)中画出折叠示意图并作简要标注.(4)探究发现:小明操作发现任一个阶奇妙矩形都可以通过折纸得到.他还发现:如图(4),点为正方形边上(不与端点重合)任意一点,连接,继续(2)中操作的第二步、第三步,四边形的周长与矩形的周长比值总是定值.请写出这个定值,并说明理由.【答案】(1);(2)见解析;(3),理由见解析【分析】(1)将代入,即可求解.(2)设正方形的边长为,根据折叠的性质,可得,设,则,在中,勾股定理建立方程,解方程,即可求解;(3)仿照(2)的方法得出2阶奇妙矩形.(4)根据(2)的方法,分别求得四边形的周长与矩形的周长,即可求解.【详解】解:(1)当时,,故答案为:.(2)如图(2),连接,

设正方形的边长为,根据折叠的性质,可得设,则根据折叠,可得,,在中,,∴,在中,∴解得:∴∴矩形是1阶奇妙矩形.(3)用正方形纸片进行如下操作(如图):第一步:对折正方形纸片,展开,折痕为,再对折,折痕为,连接;第二步:折叠纸片使落在上,点的对应点为点,展开,折痕为;第三步:过点折叠纸片,使得点分别落在边上,展开,折痕为.矩形是2阶奇妙矩形,

理由如下,连接,设正方形的边长为,根据折叠可得,则,

设,则根据折叠,可得,,在中,,∴,在中,∴解得:∴当时,∴矩形是2阶奇妙矩形.(4)如图(4),连接诶,设正方形的边长为1,设,则,

设,则根据折叠,可得,,在中,,∴,在中,∴整理得,∴四边形的边长为矩形的周长为,∴四边形的周长与矩形的周长比值总是定值【点睛】本题考查了正方形的折叠问题,勾股定理,熟练掌握折叠的性质是解题的关键.46.(2021·江苏无锡·中考真题)已知四边形是边长为1的正方形,点E是射线上的动点,以为直角边在直线的上方作等腰直角三角形,,设.(1)如图1,若点E在线段上运动,交于点P,交于点Q,连结,①当时,求线段的长;②在中,设边上的高为h,请用含m的代数式表示h,并求h的最大值;(2)设过的中点且垂直于的直线被等腰直角三角形截得的线段长为y,请直接写出y与m的关系式.【答案】(1)①;②,h最大值=;(2)【分析】(1)①过点F作FM⊥BC,交BC的延长线于点M,先证明,可得FM=,CM=,进而即可求解;②由,得CP=,把绕点A顺时针旋转90°得,可得EQ=DQ+BE,利用勾股定理得DQ=,EQ=,QP=,结合三角形面积公式,即可得到答案;(2)以点B为坐标原点,BC所在直线为x轴,建立直角坐标系,则E(m,0),A(0,1),F(1+m,m),从而求出AE的解析式为:y=x+1,AF的解析式为:y=x+1,EF的解析式为:y=mxm2,再分两种情况:①当0≤m≤时,②当m>时,分别求解即可.【详解】解:(1)①过点F作FM⊥BC,交BC的延长线于点M,∵在等腰直角三角形中,,AE=FE,在正方形中,∠B=90°,∴∠BAE+∠AEB=∠FEM+∠AEB,∴∠BAE=∠FEM,又∵∠B=∠FME,∴,∴FM=BE=,EM=AB=BC,∴CM=BE=,∴CF=;②∵∠BAE=∠FEC,∠B=∠ECP=90°,∴,∴,即:,∴CP=,把绕点A顺时针旋转90°得,则AG=AQ,∠GAB=∠QAD,GB=DQ,∵∠EAF=45°,∴∠BAE+∠QAD=∠BAE+∠GAB=90°45°=45°,即:∠GAE=∠EAF=45°,∵∠ABG=∠ABE=90°,∴B、G、E三点共线,又∵AE=AE,∴,∴EQ=EG=GB+BE=DQ+BE,∴在中,,即:,∴DQ=,∴EQ=DQ+BE=+m=,QP=1()=,∴,即:×(1m)=×h,∴=,即m=时,h最大值=;(3)以点B为坐标原点,BC所在直线为x轴,建立直角坐标系,则E(m,0),A(0,1),∵直线m过AB的中点且垂直AB,∴直线m的解析式为:x=,过点F作FM⊥x轴于点M,由(1)可知:,即FM=BE,EM=AB,∴F(1+m,m),设AE的解析式为:y=kx+b,把E(m,0),A(0,1)代入上式,得,解得:,∴AE的解析式为:y=x+1,同理:AF的解析式为:y=x+1,EF的解析式为:y=mxm2,①当0≤m≤时,如图,G(,),N(,mm2),∴y=(mm2)=,②当m>时,如图,G(,),N(,),

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论