版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(苏科版)七年级上册数学《第二章有理数》专题有理数的混合运算的计算题(50题)一、一、有理数的混合运算(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.二、有理数混合运算的四种运算技巧:1.转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.4.巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.1.(2022秋•靖西市期末)计算:(1)5﹣(+4)﹣(﹣2)+(﹣3);(2)6÷(﹣3)﹣(−12)×(﹣4)﹣22.(2022秋•大竹县校级期末)计算:(1)(−1(2)﹣13﹣2×[2﹣(﹣3)2].3.(2023•梧州二模)计算:(﹣3)×2+|﹣4|﹣(﹣2)3.4.(2022秋•长顺县期末)计算(−1)5.(2023•兴宁区校级模拟)计算:(﹣2+4)×3+(﹣2)2÷4.6.(2023•钦州一模)计算:﹣(﹣2)+22×(1﹣4).7.(2023春•松江区期末)计算:(58.(2022秋•海丰县期末)计算:﹣6÷2+(13−9.(2023春•黄浦区期中)计算:2210.(2023春•杨浦区期末)计算:−311.(2023•七星区校级模拟)计算:(﹣2)3+|﹣8|+(﹣36)÷(﹣3).12.(2023春•青秀区校级月考)计算:2313.(2022秋•西宁期末)计算:−114.(2023春•长宁区期末)计算:(2−0.4)×4115.(2022秋•宁明县期末)−16.(2023•大连一模)计算:(−2)317.(2023春•长宁区期末)计算:−218.(2023•兰陵县二模)计算:﹣16÷(﹣2)3﹣22×|−12|+(﹣1)19.(2023春•普陀区期末)计算:−320.(2023•桂平市三模)计算:−321.(2023春•普陀区期末)计算:−322.(2023春•黄浦区期中)计算:(−23.(2022秋•大冶市期末)计算:﹣14+[4﹣(3824.计算:﹣14﹣(0.5﹣1)÷13×25.计算:|4﹣412|+(−1226.(2022秋•汝阳县期末)−127.(2022秋•滕州市校级期末)计算(1)(−7(2)﹣14﹣(1﹣0.5)×13×28.(2022秋•禹城市期中)计算(1)36﹣27×(73(2)﹣72+2×(﹣3)2﹣(﹣6)÷(−13)29.(2022秋•武昌区期末)计算:(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10);(2)−230.(2022秋•洛江区期末)计算:(1)(12(2)﹣14﹣(1﹣0.5)×13×31.(2022秋•运城期末)计算:(1)(−1)(2)−332.(2022秋•通川区校级期末)计算:(1)(﹣72)+37﹣(﹣22)+(﹣17)(2)﹣32×(−13)2+(3433.(2022秋•庐江县期中)计算:(1)−12÷(2)﹣52×|1−1634.(2022秋•鞍山期末)计算:(1)(13(2)(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2).35.(2022秋•花山区校级期中)计算(1)32+5×(﹣6)﹣(﹣4)2÷(﹣8);(2)﹣22×|﹣3|+(﹣6)2×(−512)﹣|+18|÷(36.(2022秋•安陆市期中)计算:(1)﹣15+(﹣23)+32;(2)(﹣2)2×3﹣(﹣2)3÷4;(3)(−7(4)75×(1337.计算:(1)3+(﹣6)﹣(﹣7);(2)(﹣22)×(﹣114)÷(3)(34(4)﹣12021﹣(−13)×(﹣22+3)38.(2022秋•单县期中)计算:(1)24+(﹣14)﹣(﹣16)+8;(2)(﹣81)÷9(3)﹣42﹣3×22×(13−139.(2022秋•德州期中)计算:(1)−14−16×(2)(−12+(3)(512+34−(4)﹣12022﹣(1﹣0.5)×12×40.(2022秋•光明区期中)计算题:(1)﹣9﹣5﹣(﹣12)+(﹣3);(2)−1(3)(−60)×(3(4)16÷(−2)41.(2022秋•新野县期中)计算题:(1)(−1)(2)−2(3)(7(4)[3242.计算:(1)﹣10﹣(﹣16)+(﹣24);(2)5÷(−3(3)﹣22×7﹣(﹣3)×6+5;(4)(113+1843.计算:(1)(1(2)|−2|×(−1)(3)−1(4)7×(−36)×(−844.(2022秋•崇川区月考)计算:(1)(﹣20)+(+3)﹣(﹣5)﹣(+7);(2)314+(﹣235)+53(3)(23−1(4)﹣12020+(﹣2)3×(−145.(2022秋•邗江区月考)计算:(1)(−1(2)3923(3)(−11)×(−2(4)−146.(2022秋•衡南县期中)计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)(−45)×13+(−4(3)﹣22+5×(﹣3)﹣(﹣4)÷4(4)﹣14﹣(1﹣0.5)×13×47.(2022秋•魏都区校级月考)计算:(1)(+32)−5(2)9+5×(﹣3)﹣(﹣2)2÷4;(3)(56(4)﹣14﹣1÷6×[3﹣(﹣3)2].48.(2022秋•兰山区校级月考)计算.(1)3﹣(+63)﹣(﹣259)﹣(﹣41);(2)213−(+1013)+(﹣81(3)﹣12+|﹣8|÷(3﹣5)﹣(﹣2)3;(4)(−1(5)(14+149.(2022秋•宜兴市月考)计算:(1)(﹣2)×(﹣4)﹣(﹣5)×10;(2)7÷(−7(3)﹣14+3×(﹣2)2﹣(﹣2)3.(4)11(5)(1(6)(−1.25)×250.(2022秋•渝中区校级月考)有理数的计算:(1)﹣42×|12(2)(﹣56)×(﹣1516)÷(﹣134)(3)﹣12020﹣[(﹣3)2×(−23)﹣(﹣7)(4)(−34−(5)314×5+6×(﹣314(6)(13−15)+(−15)2+|−1
(苏科版)七年级上册数学《第二章有理数》专题有理数的混合运算的计算题(50题)一、一、有理数的混合运算(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.二、有理数混合运算的四种运算技巧:1.转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.4.巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.1.(2022秋•靖西市期末)计算:(1)5﹣(+4)﹣(﹣2)+(﹣3);(2)6÷(﹣3)﹣(−12)×(﹣4)﹣2【分析】(1)先把减法转化为加法,然后根据有理数加法计算即可;(2)根据有理数的乘方、有理数的乘除法和减法计算即可.【解答】解:(1)5﹣(+4)﹣(﹣2)+(﹣3)=5+(﹣4)+2+(﹣3)=0;(2)6÷(﹣3)﹣(−12=(﹣2)﹣2﹣4=﹣8.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序.2.(2022秋•大竹县校级期末)计算:(1)(−1(2)﹣13﹣2×[2﹣(﹣3)2].【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=12﹣4+9=8+9=17;(2)原式=﹣1﹣2×(﹣7)=﹣1+14=13.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.3.(2023•梧州二模)计算:(﹣3)×2+|﹣4|﹣(﹣2)3.【分析】先计算乘法、绝对值和有理数的乘方,再计算加减.【解答】解:(﹣3)×2+|﹣4|﹣(﹣2)3=﹣6+4﹣(﹣8)=﹣6+4+8=6.【点评】本题考查了有理数的混合运算,掌握有理数的混合运算顺序:先算乘方,再算乘除,最后计算加减,如果有括号,先计算括号里面的是关键.4.(2022秋•长顺县期末)计算(−1)【分析】先算乘方,再算除法,最后算加减法即可.【解答】解:(−1=(﹣1)+1+(﹣6)×(﹣2)=(﹣1)+1+12=12.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.5.(2023•兴宁区校级模拟)计算:(﹣2+4)×3+(﹣2)2÷4.【分析】先算乘方,再算乘除,最后算加减;如果有括号,要先做括号内的运算.【解答】解:(﹣2+4)×3+(﹣2)2÷4=2×3+4÷4=6+1=7.【点评】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.6.(2023•钦州一模)计算:﹣(﹣2)+22×(1﹣4).【分析】先计算乘方和括号内的运算,再计算乘法,最后计算减法即可.【解答】解:原式=2+4×(﹣3)=2﹣12=﹣10.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.7.(2023春•松江区期末)计算:(5【分析】先算括号内的和乘方,再算乘除法,最后算加法即可.【解答】解:原式=116=1﹣9+=−31【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.8.(2022秋•海丰县期末)计算:﹣6÷2+(13−【分析】根据有理数混合运算顺序和运算法则计算可得.【解答】解:原式=﹣3+4﹣9+9=1.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数混合运算顺序和运算法则.9.(2023春•黄浦区期中)计算:22【分析】先算乘方,再算乘除,最后算加减.【解答】解:2=209×=−20=−36=﹣4.【点评】本题考查了有理数的混合运算,掌握运算顺序和运算法则是解题的关键.10.(2023春•杨浦区期末)计算:−3【分析】先算乘方,再化简绝对值算除法,最后算加减.【解答】解:原式=﹣9﹣(23−=﹣9﹣(23=﹣9﹣(23×6=﹣9﹣(4﹣9)=﹣9﹣(﹣5)=﹣9+5=﹣4.【点评】本题考查了实数的运算,掌握实数的运算法则、运算律和运算顺序是解决本题的关键.11.(2023•七星区校级模拟)计算:(﹣2)3+|﹣8|+(﹣36)÷(﹣3).【分析】原式先算乘方及绝对值,再算除法,最后算加法即可得到结果.【解答】解:原式=﹣8+8+12=12.【点评】此题考查了有理数的混合运算,其运算顺序为:先乘方,再乘除,最后加减,有括号先算括号里边的,同级运算从左到右依次进行.12.(2023春•青秀区校级月考)计算:23【分析】先计算乘方和括号内的式子,然后按照乘除混合运算顺序计算即可.【解答】解:原式=8×=4×(﹣1)=﹣4.【点评】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.13.(2022秋•西宁期末)计算:−1【分析】根据有理数的混合运算的顺序计算.【解答】解:−=﹣1−1=﹣1−1=﹣1+=1【点评】本题考查了有理数的混合运算,解题的关键是掌握有理数混合运算的顺序.14.(2023春•长宁区期末)计算:(2−0.4)×41【分析】根据有理数的乘方、有理数的乘除法和减法可以解答本题.【解答】解:(2−0.4)×4=1.6×256×=85×=﹣4﹣1=﹣5.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法:先乘方、再乘除、最后加减.15.(2022秋•宁明县期末)−【分析】先乘方和括号里的,再乘除,最后加减.【解答】解:−=−4+3+24×(−1=−1−8=−11【点评】本题考查的是有理数的混合运算的能力,要注意运算顺序及符号的处理.16.(2023•大连一模)计算:(−2)3【分析】先算括号里面的,再算乘方,乘法,最后算加减即可.【解答】解:原式=﹣8﹣(16=﹣8﹣(16×24+3=﹣8﹣(4+9﹣18)=﹣8﹣(﹣5)=﹣3.【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解题的关键.17.(2023春•长宁区期末)计算:−2【分析】根据有理数的混合运算顺序,先计算乘方,再计算乘除,后计算加减,有括号的先计算括号内的,据此解答即可.【解答】解:原式=﹣4−=−4−4=−4−4=−4+(7=﹣4+1=﹣3.【点评】本题考查了有理数的混合运算,掌握相关运算法则是解答本题的关键.18.(2023•兰陵县二模)计算:﹣16÷(﹣2)3﹣22×|−12|+(﹣1)【分析】根据有理数的混合运算法则计算即可.【解答】解:−16÷(−2=−16÷(−8)−4×1=2﹣2﹣1=﹣1.【点评】本题主要考查了有理数的混合运算,掌握相应的运算法则是解答本题的关键.19.(2023春•普陀区期末)计算:−3【分析】先算乘方,再利用除法法则、乘法分配律计算乘除法,最后算加减.【解答】解:原式=﹣9+(−94)×2=﹣9+(−3=﹣9+9−3=﹣1112【点评】本题考查了有理数的混合运算,掌握有理数的运算法则、运算律是解决本题的关键.20.(2023•桂平市三模)计算:−3【分析】先根据平方运算、绝对值运算、(﹣1)n计算,再由有理数加减运算法则求解即可得到答案.【解答】解:−=−9×2=−2−1−5−5=−(2+1+5+5=−91【点评】本题考查了有理数加减混合运算,平方运算、绝对值运算、(﹣1)n计算,掌握相关运算法则是解决问题的关键.21.(2023春•普陀区期末)计算:−3【分析】先算乘方,再利用除法法则、乘法分配律计算乘除法,最后算加减.【解答】解:原式=﹣9+(−94)×2=﹣9+(−3=﹣9+9−3=﹣1112【点评】本题考查了有理数的混合运算,掌握有理数的运算法则、运算律是解决本题的关键.22.(2023春•黄浦区期中)计算:(−【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:原式=(−1112+912【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.(2022秋•大冶市期末)计算:﹣14+[4﹣(38【分析】根据有理数的混合运算的运算方法,应用乘法分配律,求出算式的值是多少即可.【解答】解:﹣14+[4﹣(38=﹣1+[4−38×24−=﹣1+[4﹣9﹣4+18]÷5=﹣1+9÷5=﹣1+1.8=0.8【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.24.计算:﹣14﹣(0.5﹣1)÷13×【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=﹣1﹣(−1=﹣1﹣6=﹣7.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.25.计算:|4﹣412|+(−12【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:原式=|−12|+(=1=﹣812【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.26.(2022秋•汝阳县期末)−1【分析】原式先计算乘方运算以及括号中的运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:原式=﹣1−12×=﹣1−=−17【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.27.(2022秋•滕州市校级期末)计算(1)(−7(2)﹣14﹣(1﹣0.5)×13×【分析】(1)根据乘法分配律计算即可;(2)先算乘方和括号内的式子、再算乘法、最后算减法即可.【解答】解:(1)(−7=−79×(﹣36)+=28+(﹣30)+27=25;(2)﹣14﹣(1﹣0.5)×13×=﹣1−1=﹣1−1=﹣1﹣4=﹣5.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序.28.(2022秋•禹城市期中)计算(1)36﹣27×(73(2)﹣72+2×(﹣3)2﹣(﹣6)÷(−13)【分析】(1)利用乘法分配律化简即可;(2)先乘方,再乘除,最后算加减即可;【解答】解:(1)原式=36﹣63+33﹣2=4.(2)原式=﹣49+2×9﹣(﹣6)×9=﹣49+18+54=﹣31+54=23【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则进行计算,有时可以利用运算律来简化运算.29.(2022秋•武昌区期末)计算:(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10);(2)−2【分析】(1)利用有理数的加减运算的法则进行解答即可;(2)先算乘方,括号里的运算,再算乘法,最后算加减即可.【解答】解:(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10)=﹣7﹣5﹣4+10=﹣6;(2)−=﹣16﹣(−23)=﹣16+2=﹣14.【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.30.(2022秋•洛江区期末)计算:(1)(12(2)﹣14﹣(1﹣0.5)×13×【分析】(1)利用乘法分配律展开,再进一步计算即可;(2)先计算乘方和括号内运算,再计算乘法,最后计算加法即可.【解答】解:(1)原式=12×(﹣24)−=﹣12+16+18=22;(2)原式=﹣1−1=﹣1−1=﹣1+=1【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.31.(2022秋•运城期末)计算:(1)(−1)(2)−3【分析】(1)先进行乘方,乘法,去绝对值运算,再进行加减运算;(2)先进行乘方,去绝对值运算,再进行乘除运算,最后算加减.【解答】解:(1)原式=﹣1﹣3+3=﹣1;(2)原式=−9÷4×=−9×1=﹣18﹣8=﹣26.【点评】本题考查了有理数的混合运算,掌握有理数的运算法则是关键.32.(2022秋•通川区校级期末)计算:(1)(﹣72)+37﹣(﹣22)+(﹣17)(2)﹣32×(−13)2+(34【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣72+37+22﹣17=﹣89+59=﹣30;(2)原式=﹣9×19+【点评】此题考查了有理数的混合运算,以及乘法分配律,熟练掌握运算法则是解本题的关键.33.(2022秋•庐江县期中)计算:(1)−12÷(2)﹣52×|1−16【分析】(1)先算乘方和括号内的式子,然后计算括号外的乘除法即可;(2)先算乘方和括号内的式子,然后计算括号外的乘法,最后算加减法即可.【解答】解:(1)−12÷=−1=−1=1;(2)﹣52×|1−=﹣25×1=−5=−5=﹣8.【点评】本题考查有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键.34.(2022秋•鞍山期末)计算:(1)(13(2)(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2).【分析】(1)先把除法转为乘法,再利用乘法的分配律进行运算,最后算加减即可;(2)先算乘方,再算括号里的运算,接着算乘法与除法,最后算加减即可.【解答】解:(1)(1=(74−78−=7=﹣2+1+=−13(2)(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)=﹣8﹣3×(16+2)﹣9÷(﹣2)=﹣8﹣3×18﹣9×(−1=﹣8﹣54+4.5=﹣57.5.【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.35.(2022秋•花山区校级期中)计算(1)32+5×(﹣6)﹣(﹣4)2÷(﹣8);(2)﹣22×|﹣3|+(﹣6)2×(−512)﹣|+18|÷(【分析】(1)先算乘方,再算乘除法,最后算加减;(2)先算乘方化简绝对值,再算乘除法,最后算加减.【解答】解:(1)原式=9+5×(﹣6)﹣16÷(﹣8)=9﹣30+2=﹣19;(2)原式=﹣4×3+36×(−512)−1=﹣12﹣15+1=﹣26.【点评】本题考查了有理数数的混合运算,掌握有理数的运算法则、运算律及运算顺序是解决本题的关键.36.(2022秋•安陆市期中)计算:(1)﹣15+(﹣23)+32;(2)(﹣2)2×3﹣(﹣2)3÷4;(3)(−7(4)75×(13【分析】(1)按照有理数加减法法则进行计算即可;(2)先乘方,再乘除,最后算减法即可;(3)运用乘法分配律进行计算即可;(4)先算括号,再进行乘除计算即可.【解答】解:(1)原式=﹣15﹣23+32=﹣38+32=﹣6;(2)原式=4×3﹣(﹣8)÷4=12﹣(﹣2)=14;(3)原式=−=28﹣30+27=25;(4)原式==7=−1=−2【点评】本题考查了有理数的混合运算,熟练有理数的混合运算法则是解题的关键.37.计算:(1)3+(﹣6)﹣(﹣7);(2)(﹣22)×(﹣114)÷(3)(34(4)﹣12021﹣(−13)×(﹣22+3)【分析】(1)先把减法转化为加法,然后根据有理数加法法则计算即可;(2)先算乘方、再算乘除法即可;(3)根据乘法分配律可以解答本题;(4)先算乘方和括号内的式子,再算括号外的乘法和加减法即可.【解答】解:(1)3+(﹣6)﹣(﹣7)=3+(﹣6)+7=4;(2)(﹣22)×(﹣114)=(﹣4)×(−5=15;(3)(34=34×(﹣12)−=(﹣9)+4+10=5;(4)﹣12021﹣(−13)×(﹣22+3)=﹣1﹣(−13)×(﹣4+3)=﹣1+1=﹣1+(−1=−1【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序.38.(2022秋•单县期中)计算:(1)24+(﹣14)﹣(﹣16)+8;(2)(﹣81)÷9(3)﹣42﹣3×22×(13−1【分析】(1)利用有理数的加减运算计算;(2)先把除法变成乘法,再计算;(3)先算乘方和括号,再算乘除,最后算加减.【解答】解:(1)24+(﹣14)﹣(﹣16)+8=24﹣14+16+8=10+16+8=34;(2)(﹣81)÷9=(﹣81)×49×=1;(3)﹣42﹣3×22×(13−1=﹣16﹣3×4×(−16)×(=﹣16−=﹣1712【点评】本题考查了有理数的混合运算,解题的关键是掌握有理数混合运算的法则和运算顺序.39.(2022秋•德州期中)计算:(1)−14−16×(2)(−12+(3)(512+34−(4)﹣12022﹣(1﹣0.5)×12×【分析】(1)先算乘方,再算乘除,有括号先算括号里面的,最后算加减运算;(2)把除变成乘,去括号,再相乘,再加减运算;(3)把除变成乘,去括号,再相乘,再加减运算;(4)先算乘方和小括号,再算乘除,最后加减运算.【解答】解:(1)−14−16×=﹣1−16×=﹣1−16×=﹣1+=1(2)(−12+=(−1=(−12)×(﹣18)+2=9﹣12+15=﹣3+15=12;(3)(512+34=(512+34=(−107)−=﹣4+15=﹣4﹣1﹣2=﹣7;(4)﹣12022﹣(1﹣0.5)×12×=﹣1−1=﹣1−1=﹣1+=3【点评】本题考查了有理数的混合运算,解题的关键是掌握有理数的运算法则和混合运算的顺序.40.(2022秋•光明区期中)计算题:(1)﹣9﹣5﹣(﹣12)+(﹣3);(2)−1(3)(−60)×(3(4)16÷(−2)【分析】(1)先化简符号,再算加减法;(2)先算乘方和括号内的,再算乘法,最后计算加减法;(3)利用乘法分配律展开计算;(4)先算乘方,再算乘除,最后计算加减.【解答】解:(1)﹣9﹣5﹣(﹣12)+(﹣3)=﹣9﹣5+12﹣3=﹣5;(2)−=−1−1=−1−1=﹣1+1=0;(3)(−60)×(=(−60)×3=﹣45+50﹣5=0;(4)16÷=16÷4−(−1=4−1=7【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时利用运算律来简化运算.41.(2022秋•新野县期中)计算题:(1)(−1)(2)−2(3)(7(4)[32【分析】(1)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;(3)将除法变为乘法,根据乘法分配律简便计算;(4)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(1)(−1=﹣1+5×(﹣4)+3=﹣1﹣20+3=﹣18;(2)−=﹣4+103×=﹣4﹣4+16=8;(3)(=(7=75×(−107)−2110×(=−2+3+8=1;(4)[3=[11=[−11=−116×=11=﹣1.【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.42.计算:(1)﹣10﹣(﹣16)+(﹣24);(2)5÷(−3(3)﹣22×7﹣(﹣3)×6+5;(4)(113+18【分析】(1)根据有理数的加减混合运算进行计算即可;(2)根据有理数的乘除法进行计算即可;(3)根据有理数的混合运算进行计算即可;(4)根据有理数的混合运算进行计算即可.【解答】解:(1)原式=﹣10+16﹣24=﹣18;(2)原式=﹣5×=−125(3)原式=﹣4×7+18+5=﹣28+18+5=﹣5;(4)原式=−43×24−=﹣32﹣3+66﹣26=5.【点评】本题考查了有理数的混合运算,掌握有理数的运算法则是解题的关键.43.计算:(1)(1(2)|−2|×(−1)(3)−1(4)7×(−36)×(−8【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算绝对值及乘方运算,再计算乘除运算,最后算加减运算,即可得到结果;(3)原式先计算乘方及括号中的运算,再计算乘法运算,最后算加减运算,即可得到结果;(4)原式约分即可得到结果.【解答】解:(1)原式=18×(﹣24)−=﹣3+8﹣4=1;(2)原式=2×(﹣1)﹣3×2×2=﹣2﹣12=﹣14;(3)原式=﹣1−1=﹣1+=−31(4)原式=48.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.44.(2022秋•崇川区月考)计算:(1)(﹣20)+(+3)﹣(﹣5)﹣(+7);(2)314+(﹣235)+53(3)(23−1(4)﹣12020+(﹣2)3×(−1【分析】(1)将有理数的加减混合运算统一成加法后,利用加法的运算律解答即可;(2)利用有理数加法的运算律解答即可;(3)将有理数的除法转换成乘法后,利用乘法的分配律解答即可;(4)先算乘方,再算乘法,最后算加减.【解答】解:(1)原式=﹣20+3+5﹣7=﹣(20+7)+(3+5)=﹣27+8=﹣19;(2)原式=(314+534=9+(﹣11)=﹣2;(3)原式=(23=23×(﹣30)−110=﹣20﹣(﹣3)+(﹣5)﹣(﹣12)=﹣20+3﹣5+12=(﹣20﹣5)+(3+12)=﹣25+15=﹣10;(4)原式=﹣1+(﹣8)×(−1=﹣1+4﹣7=(﹣1﹣7)+4=﹣8+4=﹣4.【点评】本题主要考查了有理数的混合运算,正确利用有理数的混合运算的法则解答是解题的关键.45.(2022秋•邗江区月考)计算:(1)(−1(2)3923(3)(−11)×(−2(4)−1【分析】(1)利用乘法的分配律解答即可;(2)将带分数适当变形后利用乘法的分配律解答即可;(3)利用乘法的分配律解答即可;(4)利用有理数的混合运算的法则:先算乘方,括号内的,再算乘法,最后算减法.【解答】解:(1)原式=−12×(﹣60)=30+20﹣45=50﹣45=5;(2)原式=(40−1=40×(﹣12)−1=﹣480+=﹣47912(3)原式=(﹣11)×(−2=(﹣11)×2=﹣22;(3)原式=﹣1−1=﹣1−1=﹣1+=−2【点评】本题主要考查了有理数的混合运算,正确利用有理数的混合运算的法则解答是解题的关键.46.(2022秋•衡南县期中)计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)(−45)×13+(−4(3)﹣22+5×(﹣3)﹣(﹣4)÷4(4)﹣14﹣(1﹣0.5)×13×【分析】(1)从左向右依次计算即可.(2)应用乘法分配律,求出算式的值是多少即可.(3)首先计算乘方和乘除法,然后从左向右依次计算,求出算式的值是多少即可.(4)首先计算乘方和括号里面的运算,然后计算乘法和减法,求出算式的值是多少即可.【解答】解:(1)﹣20+(﹣14)﹣(﹣18)﹣13=﹣34+18﹣13=﹣29(2)(−45)×13+(−4=(−4=(−4=﹣8(3)﹣22+5×(﹣3)﹣(﹣4)÷4=﹣4﹣15+1=﹣18(4)﹣14﹣(1﹣0.5)×13×=﹣1−1=﹣1+=1【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.47.(2022秋•魏都区校级月考)计算:(1)(+32)−5(2)9+5×(﹣3)﹣(﹣2)2÷4;(3)(56(4)﹣14﹣1÷6×[3﹣(﹣3)2].【分析】(1)将有理数的加减混合运算统一成加法后,利用有理数的加法的运算律解答即可;(2)先算乘方,再算乘除,最后算加减;(3)利用乘法的分配律解答即可;(4)先算乘方与括号内的,再算乘除,最后做减法.【解答】解:(1)原式==(32−5=﹣1﹣1=﹣2;(2)原式=9+(﹣15)﹣4÷4=9﹣15﹣1=﹣6﹣1=﹣7;(3)原式=56×(﹣24)+14=﹣20﹣6+10+9=﹣26+19=﹣7;(4)原式=﹣1﹣1×1=﹣1﹣1×1=﹣1﹣(﹣1)=0.【点评】本题主要考查了有理数的混合运算,正确利用有理数的混合运算法则运算是解题的关键.48.(2022秋•兰山区校级月考)计算.(1)3﹣(+63)﹣(﹣259)﹣(﹣41);
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 云台山泉天然矿泉水项目可行性研究报告
- 旧城改造建设项目可研报告
- 《新员工培训流程》课件
- (部编版八年级《政治》下册课件)第三单元检测卷
- 2015年浙江绍兴中考满分作文《六月不只是毕业》
- 青少年自我保护班会课件
- 美食广场导购员录用合同
- 档案馆查阅室玻璃房租赁合同
- 高铁站地下停车场施工合同
- 房地产经纪档案管理
- 辽宁省普通高中2024-2025学年高一上学期12月联合考试语文试题(含答案)
- 储能运维安全注意事项
- 【MOOC】信号与系统-北京邮电大学 中国大学慕课MOOC答案
- 《汽车营销方案》课件
- 2024年工程劳务分包联合协议
- 海鸥课件教学课件
- 人工智能语言与伦理学习通超星期末考试答案章节答案2024年
- 胡蜂蛰伤规范化诊治中国专家共识解读课件
- 航空与航天学习通超星期末考试答案章节答案2024年
- 电缆敷设专项施工方案
- 石油测井方案与应急处置预案
评论
0/150
提交评论