版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页2025届广西柳州市柳江区九年级数学第一学期开学考试模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的()A.中位数B.众数C.平均数D.方差2、(4分)如图,矩形ABCD中,E是AD的中点,将沿直线BE折叠后得到,延长BG交CD于点F若,则FD的长为()A.3 B. C. D.3、(4分)如图,已知菱形的两条对角线分别为6cm和8cm,则这个菱形的高DE为()A.2.4cm B.4.8cm C.5cm D.9.6cm4、(4分)化简20的结果是()A.52 B.210 C.25、(4分)如图1,在矩形中,动点从点出发,沿方向运动至点处停止.设点运动的路程为,的面积为,如果关于的函致图象如图2所示,则矩形的周长是()图1图2A. B. C. D.6、(4分)如图,O既是AB的中点,又是CD的中点,并且AB⊥CD.连接AC、BC、AD、BD,则AC,BC,AD,BD这四条线段的大小关系是()A.全相等B.互不相等C.只有两条相等D.不能确定7、(4分)已知甲、乙、丙三个旅行团的游客人数都相等,且每个团游客的平均年龄都是30岁,这三个团游客年龄的方差分别是=1.4,=11.1.=25,导游小芳喜欢带游客年龄相近的团队,若要在这三个团中选择一个,则她应选()A.甲 B.乙 C.丙 D.都可以8、(4分)如图四边形ABCD是正方形,点E、F分别在线段BC、DC上,∠BAE=30°.若线段AE绕点A逆时针旋转后与线段AF重合,则旋转的角度是()A.30° B.45° C.60° D.90°二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知关于x的方程(m-1)x2-2x+1=0有两个不相等的实数根,则m的取值范围是_____.10、(4分)计算:+×=________.11、(4分)在平面直角坐标系中,四边形是菱形。若点A的坐标是,点的坐标是__________.12、(4分)如图,将平行四边形ABCD折叠,使顶点D恰好落在AB边上的点M处,折痕为AN,有以下四个结论①MN∥BC;②MN=AM;③四边形MNCB是矩形;④四边形MADN是菱形,以上结论中,你认为正确的有_____________(填序号).13、(4分)一次函数的图象经过点,且与轴、轴分别交于点、,则的面积等于___________.三、解答题(本大题共5个小题,共48分)14、(12分)某学校为了创建书香校园,去年购买了一批图书.其中科普书的单价比文学书的单价多8元,用1800元购买的科普书的数量与用l000元购买的文学书的数量相同.(1)求去年购买的文学书和科普书的单价各是多少元;(2)这所学校今年计划再购买这两种文学书和科普书共200本,且购买文学书和科普书的总费用不超过2088元.今年文学书的单价比去年提高了20%,科普书的单价与去年相同,且每购买1本科普书就免费赠送1本文学书,求这所学校今年至少要购买多少本科普书?15、(8分)在进行二次根式运算时,我们有时会碰上如这样的式子,我们还可以将其进一步化简:以上这种化简过程叫做分母有理化.还可以尝试用以下方法化简:(1)请用两种不同的方法化简;(2)请任选一种方法化简:16、(8分)为了倡导节约能源,自某日起,我国对居民用电采用阶梯电价,为了使大多数家庭不增加电费支出,事前就需要了解居民全年月平均用电量的分布情况,制订一个合理的方案.某调查人员随机调查了市户居民全年月平均用电量(单位:千瓦时)数据如下:得到如下频数分布表:全年月平均用电量/千时频数频率合计画出频数分布直方图,如下:(1)补全数分布表和率分布直方图(2)若是根据数分布表制成扇形统计图,则不低于千瓦时的部分圆心角的度数为_____________;(3)若市的阶梯电价方案如表所示,你认为这个阶梯电价方案合理吗?档次全年月平均用电量/千瓦时电价(元/千瓦时)第一档第二档第三档大于17、(10分)已知关于的一元二次方程有两个实数根,.(1)求实数的取值范围;(2)若方程的一个根是1,求另一个根及的值.18、(10分)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)直线与轴的交点是________.20、(4分)已知若关于x的分式方程有增根,则__________.21、(4分)已知菱形的两对角线长分别为6㎝和8㎝,则菱形的面积为______________㎝222、(4分)如图,ΔABC中,E为BC的中点,AD平分∠BAC,BD⊥AD,若AB=10,AC=16,则DE=______.23、(4分)关于x的一元一次方程ax+b=0的根是x=m,则一次函数y=ax+b的图象与x轴交点的坐标是_____.二、解答题(本大题共3个小题,共30分)24、(8分)如图,D是△ABC的边AB上一点,CE∥AB,DE交AC于点F,若FA=FC.(1)求证:四边形ADCE是平行四边形;(2)若AE⊥EC,EF=EC=1,求四边形ADCE的面积.25、(10分)如图,在由边长为1个单位的长度的小正方形组成的网格图中,已知点O及△ABC的顶点均为网格线的交点(1)在给定网格中,以O为位似中心,将△ABC放大为原来的三倍,得到请△A′B′C′,请画出△A′B′C′;(2)B′C′的长度为___单位长度,△A′B′C′的面积为___平方单位。26、(12分)(1)计算并观察下列各式:第个:;第个:;第个:;······这些等式反映出多项式乘法的某种运算规律.(2)猜想:若为大于的正整数,则;(3)利用(2)的猜想计算;(4)拓广与应用.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】
7人成绩的中位数是第4名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有7个人,且他们的分数互不相同,第4的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少,故选A.本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义,熟练掌握相关的定义是解题的关键.2、C【解析】
根据点E是AD的中点以及翻折的性质可以求出AE=DE=EG,然后利用“HL”证明△EDF和△EGF全等,根据全等三角形对应边相等可证得DF=GF;设FD=x,表示出FC、BF,然后在Rt△BCF中,利用勾股定理列式进行计算即可得解.【详解】∵E是AD的中点,∴AE=DE,∵△ABE沿BE折叠后得到△GBE∴AE=EG,AB=BG,∴ED=EG,∵在矩形ABCD中,∴∠A=∠D=90°,∴∠EGF=90°,∵在Rt△EDF和Rt△EGF中,,∴Rt△EDF≌Rt△EGF(HL),∴DF=FG,设DF=x,则BF=6+x,CF=6-x,在Rt△BCF中,102+(6-x)2=(6+x)2,解得x=.故选C.本题考查了矩形的性质,全等三角形的判定与性质,勾股定理的应用,翻折的性质,熟记性质,找出三角形全等的条件ED=EG是解题的关键.3、B【解析】
解:如图所示:∵四边形ABCD是菱形,∴OA=AC=4,OB=BD=3,AC⊥BD,∴AB=,∵菱形ABCD的面积=AB•DE=AC•BD=×8×6=24,∴DE==4.8;故选B.4、C【解析】
直接利用二次根式的乘法运算法则,计算得出答案.【详解】解:20=故选择:C.此题主要考查了二次根式的乘法运算,正确化简二次根式是解题的关键.5、C【解析】
根据三角形的面积变化情况,可得R在PQ上时,三角形面积不变,可得答案.【详解】解:由图形可知,,周长为,故选C.本题考查了动点函数图象,利用三角型面积的变化确定R的位置是解题关键.6、A【解析】
根据已知条件可判断出是菱形,则AC,BC,AD,BD这四条线段的大小关系即可判断.【详解】∵O既是AB的中点,又是CD的中点,∴,∴是平行四边形.∵AB⊥CD,∴平行四边形是菱形,∴.故选:A.本题主要考查菱形的判定及性质,掌握菱形的判定及性质是解题的关键.7、A【解析】分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.详解:∵S甲2=1.4,S乙2=11.1,S丙2=25,∴S甲2<S乙2<S丙2,∴游客年龄最相近的团队是甲.故选A.点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8、A【解析】
根据正方形的性质可得AB=AD,∠B=∠D=90°,再根据旋转的性质可得AE=AF,然后利用“HL”证明Rt△ABE和Rt△ADF全等,根据全等三角形对应角相等可得∠DAF=∠BAE,然后求出∠EAF=30°,再根据旋转的定义可得旋转角的度数.【详解】解:∵四边形ABCD是正方形,
∴AB=AD,∠B=∠D=90°,
∵线段AE绕点A逆时针旋转后与线段AF重合,
∴AE=AF,
在Rt△ABE和Rt△ADF中,,
∴Rt△ABE≌Rt△ADF(HL),
∴∠DAF=∠BAE,
∵∠BAE=30°,
∴∠DAF=30°,
∴∠EAF=90°-∠BAE-∠DAF=90°-30°-30°=30°,
∴旋转角为30°.
故选:A.本题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,求出Rt△ABE和Rt△ADF全等是解题的关键,也是本题的难点.二、填空题(本大题共5个小题,每小题4分,共20分)9、m<2且m≠1.【解析】
根据一元二次根的判别式及一元二次方程的定义求解.【详解】解:∵关于x的方程(m-1)x2-2x+1=0有两个不相等的实数根,∴m-1≠0,且△>0,即4-4(m-1)>0,解得m<2,∴m的取值范围是:m<2且m≠1.故答案为:m<2且m≠1.本题考查根的判别式及一元二次方程的定义,掌握公式正确计算是解题关键.10、3【解析】
先根据二次根式的乘法法则运算,然后化简后合并即可.【详解】解:原式=2+=3.故答案为:3.本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.11、【解析】
作AD⊥y轴于点D,由勾股定理求出OA的长,结合四边形是菱形可求出点C的坐标.【详解】作AD⊥y轴于点D.∵点A的坐标是,∴AD=1,OD=,∴,∵四边形是菱形,∴AC=OA=2,∴CD=1+2=3,∴C(3,).故答案为:C(3,)本题考查了菱形的性质,勾股定理以及图形与坐标,根据勾股定理求出OA的长是解答本题的关键.12、①②④【解析】
根据四边形ABCD是平行四边形,可得∠B=∠D,再根据折叠可得∠D=∠NMA,再利用等量代换可得∠B=∠NMA,然后根据平行线的判定方法可得MN∥BC;证明四边形AMND是平行四边形,再根据折叠可得AM=DA,进而可证出四边形AMND为菱形,再根据菱形的性质可得MN=AM,不能得出∠B=90°;即可得出结论.【详解】解:∵四边形ABCD是平行四边形,∴∠B=∠D,∵根据折叠可得∠D=∠NMA,∴∠B=∠NMA,∴MN∥BC;①正确;∵四边形ABCD是平行四边形,∴DN∥AM,AD∥BC,∵MN∥BC,∴AD∥MN,∴四边形AMND是平行四边形,根据折叠可得AM=DA,∴四边形AMND为菱形,∴MN=AM;②④正确;没有条件证出∠B=90°,④错误;故答案为①②④.本题主要考查了翻折变换的性质、平行四边形的判定与性质、菱形的判定与性质、矩形的判定等知识,熟练掌握翻折变换的性质、平行四边形和菱形以及矩形的判定是解题的关键.13、【解析】∵一次函数y=−2x+m的图象经过点P(−2,3),∴3=4+m,解得m=−1,∴y=−2x−1,∵当x=0时,y=−1,∴与y轴交点B(0,−1),∵当y=0时,x=−,∴与x轴交点A(−,0),∴△AOB的面积:×1×=.故答案为.点睛:首先根据待定系数法求得一次函数的解析式,然后计算出与x轴交点,与y轴交点的坐标,再利用三角形的面积公式计算出面积即可.三、解答题(本大题共5个小题,共48分)14、(1)文学书的单价是1元,科普书的单价是2元;(2)至少要购买52本科普书.【解析】
(1)设去年购买的文学书的单价是x元,科普书的单价是(x+8)元,根据“用200元购买的科普书的数量与用l000元购买的文学书的数量相同”列出方程;
(2)设这所学校今年要购买y本科普书,根据“购买文学书和科普书的总费用不超过2088元”列出不等式.【详解】解:(1)设去年购买的文学书的单价是x元,科普书的单价是(x+8)元,根据题意,得.解得x=1.经检验x=1是原方程的解.当x=1时,x+8=2.答:去年购买的文学书的单价是1元,科普书的单价是2元;(2)设这所学校今年要购买y本科普书,根据题意,得1×(1+20%)(200﹣y﹣y)+2y≤2088解得y≥52答:这所学校今年至少要购买52本科普书.本题考查分式方程的应用和一元一次不等式的应用,分析题意,找到合适的数量关系是解决问题的关键.15、(1);(2).【解析】
(1)利用分母有理化计算或把分子因式分解后约分;(2)先分母有理化,然后合并即可.【详解】(1)方法一:方法二:(2)原式,,,.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.16、(1)详见解析;(2)144°;(3)合理,理由详见解析.【解析】
(1)统计出各组的频数,即可补全频数分布表,根据频数分布表中频率,可以补全频率分布直方图,
(2)用360°乘以不等于160千瓦时的部分所占的百分比即可,
(3)通过覆盖的程度,以及第一档所占的百分比,确定合理性.【详解】(1)全年月平均用电量/千时频数频率合计(2)360°×(24%+10%+6%)=144°(3)合理;从统计图表中看出,全年月平均用电量小于千万时的有户,占,即第一档全年月平均用电量覆盖了大多数居民家庭,所以说是合理的.考查频率分布直方图、频率分布表、以及扇形统计图的制作方法,理清图表之间的关系,是解决问题的关键.17、(1)当时,原方程有两个实数根;(2)另一个根为0,的值为0.【解析】
(1)根据一元二次方程根的判别式即可列出不等式进行求解;(2)把方程的根代入原方程求出k,再进行求解即可.【详解】(1)∵原方程有两个实数根,∴,∴,∴,∴.∴当时,原方程有两个实数根.(2)把代入原方程得,得:,∴原方程化为:,解这个方程得,,故另一个根为0,的值为0此题主要考查一元二次方程的解,解题的关键是熟知根的判别式及方程的解法.18、(1)111,51;(2)11.【解析】
(1)设乙工程队每天能完成绿化的面积是x(m2),根据在独立完成面积为411m2区域的绿化时,甲队比乙队少用4天,列出方程,求解即可;(2)设应安排甲队工作y天,根据这次的绿化总费用不超过8万元,列出不等式,求解即可.【详解】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:解得:x=51,经检验x=51是原方程的解,则甲工程队每天能完成绿化的面积是51×2=111(m2),答:甲、乙两工程队每天能完成绿化的面积分别是111m2、51m2;(2)设应安排甲队工作y天,根据题意得:1.4y+×1.25≤8,解得:y≥11,答:至少应安排甲队工作11天.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】
令中即可求解.【详解】解:令中,得到.故与轴的交点是.故答案为:.本题考查一次函数与坐标轴的交点问题,与x轴的交点则令y=0求解;与y轴的交点则令x=0求解.20、1【解析】
增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x-2=0,所以增根是x=2,把增根代入化为整式方程的方程即可求出未知字母的值.【详解】方程两边都乘(x-2),得1+(x-2)=k∵原方程有增根,∴最简公分母x-2=0,即增根是x=2,把x=2代入整式方程,得k=1.故答案为1.增根问题可按如下步骤进行:①根据最简公分母确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.21、14【解析】
根据菱形的面积等于两对角线乘积的一半求得其面积即可.【详解】由已知得,菱形的面积等于两对角线乘积的一半即:6×8÷1=14cm1.故答案为:14.此题主要考查菱形的面积等于两条对角线的积的一半.22、3【解析】
延长BD交AC于H,证明△ADB≌△ADH,根据全等三角形的性质得到AH=AB=10,BD=DH,根据三角形的中位线定理即可求解.【详解】延长BD交AC于H,∵AD平分∠BAC,BD⊥AD,∴∠BAD=∠HAD,∠ADB=∠ADH=90°,又AD=AD,∴△ADB≌△ADH,∴AH=AB=10,D为BH中点,∴CH=AC-AH=6,∵E为BC中点,故DE是△BCH的中位线,∴DE=12CH=3故填:3.此题主要考查三角形中位线的判定与性质,解题的关键是根据题意作出辅助线证明三角形全等进行求解.23、(m,0).【解析】分析:关于x的一元一次方程ax+b=0的根是x=m,即x=m时,函数值为0,所以直线过点(m,0),于是得到一次函数y=ax+b的图象与x轴交点的坐标.详解:关于x的一元一次方程ax+b=0的根是x=m,则一次函数y=ax+b的图象与x轴交点的坐标为(m,0).故答案为:(m,0).点睛:本题主要考查了一次函数与一元一次方程:任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《AE抠像技术》课件
- 2024年度矿井废弃物处理与生态恢复合同
- 电气专项:企业用电安全管理
- 2024年国际马拉松赛道草坪种植合同
- 2024年度单位与物业公司安保服务合同:确保单位财产安全的合作协议
- 2024年度苗木运输及保险服务合同
- 《食品添加剂的毒性》课件
- 2024年度园林景观电照施工合同2篇
- 2024年度股权投资合同:企业投资与股权转让协议
- 2024中国移动湖北公司春季校园招聘易考易错模拟试题(共500题)试卷后附参考答案
- 发展生涯报告
- 逐梦青春志在四方规划启航职引未来
- 家乡介绍山东日照概述课件
- 基于Android的天气预报系统的设计与实现
- 物理化学基本原理
- (完整)中医症候积分量表
- 小学科学教师基本功大赛试题汇总
- 武汉理工大学土力学与基础工程(新)考试答案
- 二次函数的应用(最值问题)说课稿
- 设计行业设计安全培训
- 《脑血管疾病的护理》课件
评论
0/150
提交评论