![福建省泉州十六中2025届数学高一上期末统考试题含解析_第1页](http://file4.renrendoc.com/view14/M04/38/1C/wKhkGWcSoB2AfMalAAGkjrGKYAs721.jpg)
![福建省泉州十六中2025届数学高一上期末统考试题含解析_第2页](http://file4.renrendoc.com/view14/M04/38/1C/wKhkGWcSoB2AfMalAAGkjrGKYAs7212.jpg)
![福建省泉州十六中2025届数学高一上期末统考试题含解析_第3页](http://file4.renrendoc.com/view14/M04/38/1C/wKhkGWcSoB2AfMalAAGkjrGKYAs7213.jpg)
![福建省泉州十六中2025届数学高一上期末统考试题含解析_第4页](http://file4.renrendoc.com/view14/M04/38/1C/wKhkGWcSoB2AfMalAAGkjrGKYAs7214.jpg)
![福建省泉州十六中2025届数学高一上期末统考试题含解析_第5页](http://file4.renrendoc.com/view14/M04/38/1C/wKhkGWcSoB2AfMalAAGkjrGKYAs7215.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省泉州十六中2025届数学高一上期末统考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某几何体的正视图和侧视图均为如图1所示,则在图2的四个图中可以作为该几何体的俯视图的是A.(1),(3) B.(1),(4)C.(2),(4) D.(1),(2),(3),(4)2.已知函数的图像如图所示,则函数与在同一坐标系中的图像是()A. B.C. D.3.设长方体的长、宽、高分别为,其顶点都在一个球面上,则该球的表面积为A.3a2 B.6a2C.12a2 D.24a24.设集合A={3,4,5},B={3,6},P={x|xA},Q={x|xB},则PQ=A.{3}B.{3,4,5,6}C.{{3}}D.{{3},}5.已知圆:与圆:,则两圆的位置关系是A.相交 B.相离C.内切 D.外切6.在平面直角坐标系中,设角的终边上任意一点的坐标是,它与原点的距离是,规定:比值叫做的正余混弦,记作.若,则()A. B.C. D.7.函数的部分图象大致是A. B.C. D.8.在平行四边形中,设,,,,下列式子中不正确的是()A. B.C. D.9.已知函数则值域为()A. B.C. D.10.若圆上至少有三个不同的点到直线的距离为,则的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.下列四个命题中:①若奇函数在上单调递减,则它在上单调递增②若偶函数在上单调递减,则它在上单调递增;③若函数为奇函数,那么函数的图象关于点中心对称;④若函数为偶函数,那么函数的图象关于直线轴对称;正确的命题的序号是___________.12.若关于的方程的一个根在区间上,另一个根在区间上,则实数的取值范围是__________13.已知函数,则函数的值域为______14.边长为2的菱形中,,将沿折起,使得平面平面,则二面角的余弦值为__________15.已知集合,若集合A有且仅有2个子集,则a的取值构成的集合为________.16.设是以2为周期的奇函数,且,若,则的值等于___三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知甲乙两人的投篮命中率分别为,如果这两人每人投篮一次,求:(1)两人都命中的概率;(2)两人中恰有一人命中的概率.18.已知,函数.(1)当时,解不等式;(2)若关于的方程的解集中恰有两个元素,求的取值范围;(3)设,若对任意,函数在区间上的最大值与最小值的和不大于,求的取值范围.19.已知函数,.(1)用函数单调性的定义证明:是增函数;(2)若,则当为何值时,取得最小值?并求出其最小值.20.已知函数f(x)=2sin2(x+)-2cos(x-)-5a+2(1)设t=sinx+cosx,将函数f(x)表示为关于t的函数g(t),求g(t)的解析式;(2)对任意x∈[0,],不等式f(x)≥6-2a恒成立,求a的取值范围21.已知,且,(1)求,的值;(2),求的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】可以是一个正方体上面一个球,也可以是一个圆柱上面一个球2、B【解析】由函数的图象可得,函数的图象过点,分别代入函数式,,解得,函数与都是增函数,只有选项符合题意,故选B.【方法点晴】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.3、B【解析】方体的长、宽、高分别为,其顶点都在一个球面上,长方体的对角线的长就是外接球的直径,所以球直径为:,所以球的半径为,所以球的表面积是,故选B4、D【解析】集合P={x|x⊆A}表示集合A的子集构成的集合,故P={∅,{3},{4},{5},{3,4},{3,5},{4,5},{3,4,5}},同样Q={∅,{3},{6},{3,6}}.∴P∩Q={{3},Φ};故选D.5、C【解析】分析:求出圆心的距离,与半径的和差的绝对值比较得出结论详解:圆,圆,,所以内切.故选C点睛:两圆的位置关系判断如下:设圆心距为,半径分别为,则:,内含;,内切;,相交;,外切;,外离6、D【解析】由可得出,根据题意得出,结合可得出关于和的方程组,解出这两个量,然后利用商数关系可求出的值.【详解】,则,由正余混弦的定义可得.则有,解得,因此,.故选:D.【点睛】本题考查三角函数的新定义,涉及同角三角函数基本关系的应用,根据题意建立方程组求解和的值是解题的关键,考查运算求解能力,属于基础题.7、B【解析】判断f(x)的奇偶性,在(,π)上的单调性,再通过f()的值判断详解:f(﹣x)==﹣f(x),∴f(x)是奇函数,f(x)的图象关于原点对称,排除C;,排除A,当x>0时,f(x)=,f′(x)=,∴当x∈(,π)时,f′(x)>0,∴f(x)在(,π)上单调递增,排除D,故选B点睛:点睛:本题考查函数图象的判断与应用,考查转化思想以及数形结合思想的应用.对于已知函数表达式选图像的题目,可以通过表达式的定义域和值域进行排除选项,可以通过表达式的奇偶性排除选项;也可以通过极限来排除选项.8、B【解析】根据向量加减法计算,再进行判断选择.【详解】;;;故选:B【点睛】本题考查向量加减法,考查基本分析求解能力,属基础题.9、C【解析】先求的范围,再求的值域.【详解】令,则,则,故选:C10、D【解析】先整理圆的方程为可得圆心和半径,再转化问题为圆心到直线的距离小于等于,进而求解即可【详解】由题,圆标准方程为,所以圆心为,半径,因为圆上至少有三个不同点到直线的距离为,所以,所以圆心到直线的距离小于等于,即,解得,故选:D【点睛】本题考查直线与圆的位置关系的应用,考查圆的一般方程到圆的标准方程的转化,考查数形结合思想二、填空题:本大题共6小题,每小题5分,共30分。11、②③【解析】根据奇函数、偶函数的性质可判断①②,结合平移变换可判断③④.【详解】奇函数在关于原点对称的两个区间上具有相同的单调性,偶函数在关于原点对称的两个区间上具有相反的单调性,故①错误,②正确;因为函数为奇函数,图象关于原点对称,的图象可以由的图象向右平移1个单位长度得到,故的图象关于点对称,故③正确;函数的图象可以由函数的图象向左平移1个单位长度得到,因为为偶函数,图象关于y轴对称,所以的图象关于直线轴对称,故④错误.故答案为:②③12、【解析】设,时,方程只有一个根,不合题意,时,方程的根,就是函数的零点,方程的一个根在区间上,另一个根在区间上,且只需,即,解得,故答案为.13、【解析】先求的的单调性和值域,然后代入中求得函数的值域.【详解】由于为上的增函数,而,,即,对,由于为增函数,故,即函数的值域为,也即.【点睛】本小题主要考查函数的单调性,考查函数的值域的求法,考查复合函数值域的求法.属于中档题.14、【解析】作,则为中点由题意得面作,连则为二面角的平面角故,,点睛:本题考查了由平面图形经过折叠得到立体图形,并计算二面角的余弦值,本题关键在于先找出二面角的平面角,依据定义先找出平面角,然后根据各长度,计算得结果15、【解析】由题意得出方程有唯一实数解或有两个相等的实数解,然后讨论并求解当和时满足题意的参数的值.【详解】∵集合A有且仅有2个子集,可得A中仅有一个元素,即方程仅有一个实数解或有两个相等的实数解.当时,方程化为,∴,此时,符合题意;当时,则由,,令时解方程得,此时,符合题意,令时解方程得,此时符合题意;综上可得满足题意的参数可能的取值有0,-1,1,∴a的取值构成的集合为.故答案为:.【点睛】本题考查了由集合子集的个数求参数的问题,考查了分类讨论思想,属于一般难度的题.16、【解析】先利用求得的值,再依据题给条件用来表示,即可求得的值【详解】∵,∴,又∵是以2为周期的奇函数,∴故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)0.56;(2)0.38.【解析】(1)利用相互独立事件概率计算公式,求得两人都命中的概率.(2)利用互斥事件概率公式和相互独立事件概率计算公式,求得恰有一人命中的概率.【详解】记事件A,B分别为“甲投篮命中",“乙投篮命中”,则.(1)“两人都命中”为事件AB,由于A,B相互独立,所以,即两人都命中的概率为0.56.(2)由于互斥且A,B相互独立,所以恰有1人命中概率为.即恰有一人命中的概率为0.38.【点睛】关键点睛:本小题主要考查相互独立事件概率计算,考查互斥事件概率公式,关键在于准确地理解题意和运用公式求解.18、(1);(2);(3).【解析】(1)当a=1时,利用对数函数的单调性,直接解不等式f(x)1即可;(2)化简关于x的方程f(x)+2x=0,通过分离变量推出a的表达式,通过解集中恰有两个元素,利用二次函数的性质,即可求a的取值范围;(3)在R上单调递减利用复合函数的单调性,求解函数的最值,∴令,化简不等式,转化为求解不等式的最大值,然后求得a的范围【详解】(1)当时,,∴,解得,∴原不等式的解集为.(2)方程,即为,∴,∴,令,则,由题意得方程在上只有两解,令,,结合图象可得,当时,直线和函数的图象只有两个公共点,即方程只有两个解∴实数的范围.(3)∵函数在上单调递减,∴函数在定义域内单调递减,∴函数在区间上最大值为,最小值为,∴,由题意得,∴恒成立,令,∴对,恒成立,∵在上单调递增,∴∴,解得,又,∴∴实数的取值范围是.【点睛】本题考查函数的综合应用,复合函数的单调性以及指对复合型函数的最值的求法,利用换元法将指对复合型函数转化为二次函数求最值是关键,考查转化思想以及分类讨论思想的应用,属于难题19、证明详见解析;(2)时,的最小值是.【解析】(1)根据函数单调性定义法证明,定义域内任取,且,在作差,变形后判断符号,证明函数的单调性;(2)首先根据函数的定义域求的范围,再根据基本不等式求最小值.【详解】(1)证明:在区间任取,设,,,,,即,所以函数在是增函数;(2),的定义域是,,设,时,,当时,,当,即时,等号成立,即时,函数取得最小值4.【点睛】易错点睛:本题的易错点是第二问容易忽略函数的定义域,换元时,也要注意中间变量的取值范围.20、(1),;(2)【解析】:(1)首先由两角和的正弦公式可得,进而即可求出的取值范围;接下来对已知的函数利用进行表示;对于(2),首先由的取值范围,求出的取值范围,再对已知进行恒等变形可得在区间上恒成立,据此即可得到关于的不等式,解不等式即可求出的取值范围.试题解析:(1),因为,所以,其中,即,.(2)由(1)知,当时,,又在区间上单调递增,所以,从而,要使不等式在区间上恒成
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农场供销合同范本
- 住房装修设计合同范本
- 农村桥梁包工合同范本
- 养鸡合伙协议合同范本
- 0租金合同范本
- 养鸡股合同范本
- 公布合同范本函件
- 写字楼免租合同范本
- 写土地征收合同范本
- 保险给付合同范本
- Unit 2 Know your body(说课稿)-2024-2025学年外研版(三起)(2024)英语三年级下册
- 食品企业危机管理应对方案
- 名师工作室建设课件
- 《电子技术应用》课程标准(含课程思政)
- 纸尿裤使用管理制度内容
- 电力储能用集装箱技术规范
- 体检中心员工礼仪培训
- 《工程质量验评培训》课件
- 2025-2025学年度人教版小学五年级美术下册教学计划
- 《课标教材分析》课件
- 筑牢安全防线 创建平安校园
评论
0/150
提交评论