版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届福建省南平市邵武市四中高一上数学期末复习检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则的值为()A. B.C. D.2.已知函数是定义在上的偶函数,对任意,都有,当时,,则A. B.C.1 D.3.已知函数为奇函数,且当时,,则()A. B.C. D.4.已知函数,记集合,,若,则的取值范围是()A.[0,4] B.(0,4)C.[0,4) D.(0,4]5.设集合,若,则a的取值范围是()A. B.C. D.6.函数零点所在区间为A. B.C. D.7.已知点P(cosα,sinα),Q(cosβ,sinβ),则的最大值是()A. B.2C.4 D.8.已知函数则值域为()A. B.C. D.9.已知函数的图象与函数的图象关于直线对称,函数是奇函数,且当时,,则()A.-18 B.-12C.-8 D.-610.下列运算中,正确的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,,BC边上的高等于,则______________12.函数的单调递增区间是___________.13.已知函数(且)的图象过定点,则点的坐标为______14.函数,的图象恒过定点P,则P点的坐标是_____.15.已知一个扇形的弧所对的圆心角为54°,半径r=20cm,则该扇形的弧长为_____cm16.一个扇形周长为8,则扇形面积最大时,圆心角的弧度数是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数..(1)判断函数的奇偶性并证明;(2)若函数在区间上单调递减,且值域为,求实数的取值范围18.已知函数定义域为,若对于任意的,都有,且时,有.(1)判断并证明函数的奇偶性;(2)判断并证明函数的单调性;(3)若对所有,恒成立,求的取值范围.19.已知函数,,且.(1)求实数m的值,并求函数有3个不同的零点时实数b的取值范围;(2)若函数在区间上为增函数,求实数a取值范围.20.已知直线:的倾斜角为(1)求a;(2)若直线与直线平行,且在y轴上的截距为-2,求直线与直线的交点坐标21.若函数有两个零点,则实数的取值范围是_____.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】利用余弦的二倍角公式即可求解.【详解】.故选:C.2、C【解析】由题意,故选C3、C【解析】根据奇函数的定义得到,又由解析式得到,进而得到结果.【详解】因为函数为奇函数,故得到当时,,故选:C.4、C【解析】对分成和两种情况进行分类讨论,结合求得的取值范围.【详解】当时,,此时,符合题意.当时,,由解得或,由得或,其中,,和都不是这个方程的根,要使,则需.综上所述,的取值范围是.故选:C5、D【解析】根据,由集合A,B有公共元素求解.【详解】集合,因为,所以集合A,B有公共元素,所以故选:D6、C【解析】利用零点存在性定理计算,由此求得函数零点所在区间.【详解】依题意可知在上为增函数,且,,,所以函数零点在区间.故选C.【点睛】本小题主要考查零点存在性定理的运用,属于基础题.7、B【解析】,则,则的最大值是2,故选B.8、C【解析】先求的范围,再求的值域.【详解】令,则,则,故选:C9、D【解析】首先根据题意得到,再根据的奇偶性求解即可.【详解】由题知:,所以当时,,又因为函数是奇函数,所以.故选:D10、C【解析】根据对数和指数的运算法则逐项计算即可.【详解】,故A错误;,故B错误;,故C正确;,故D错误.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】设边上的高为,则,求出,.再利用余弦定理求出.【详解】设边上的高为,则,所以,由余弦定理,知故答案为【点睛】本题主要考查余弦定理,意在考查学生对该知识的理解掌握水平,属于基础题.12、##【解析】求出函数的定义域,利用复合函数法可求得函数的单调递增区间.【详解】由得,解得,所以函数的定义域为.设内层函数,对称轴方程为,抛物线开口向下,函数在区间上单调递增,在区间上单调递减,外层函数为减函数,所以函数的单调递增区间为.故答案为:.13、【解析】令,结合对数的运算即可得出结果.【详解】令,得,又因此,定点的坐标为故答案为:14、【解析】令,解得,且恒成立,所以函数的图象恒过定点;故填.15、【解析】利用扇形的弧长公式求弧长即可.【详解】由弧长公式知:该扇形的弧长为(cm).故答案为:16、2【解析】设扇形的半径为,则弧长为,结合面积公式计算面积取得最大值时的取值,再用圆心角公式即可得弧度数【详解】设扇形的半径为,则弧长为,,所以当时取得最大值为4,此时,圆心角为(弧度)故答案为:2三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)奇函数(2)【解析】(1)先求定义域,再研究与的关系得函数奇偶性;(2)由函数在上的单调性,得函数的值域,又因为值域为,转化为关于和的关系式,由二次函数的图像与性质求的取值范围【详解】(1)函数定义域为,且.所以函数为奇函数(2)考察为单调增函数,利用复合函数单调性得到,所以,,即,即为方程的两个根,且,令,满足条件,解得.【点睛】判断函数的奇偶性,要先求定义域,判断定义域是否关于原点对称再求与的关系;计算函数的值域,要先根据函数的定义域及单调性求解18、(1)为奇函数;证明见解析;(2)是在上为单调递增函数;证明见解析;(3)或.【解析】(1)根据已知等式,运用特殊值法和函数奇偶性的定义进行判断即可;(2)根据函数的单调性的定义,结合已知进行判断即可;(3)根据(1)(2),结合函数的单调性求出函数在的最大值,最后根据构造新函数,利用新函数的单调性进行求解即可.详解】(1)∵,令,得,∴,令可得:,∴,∴为奇函数;(2)∵是定义在上的奇函数,由题意设,则,由题意时,有,∴,∴是在上为单调递增函数;(3)∵在上为单调递增函数,∴在上的最大值为,∴要使,对所有,恒成立,只要,即恒成立;令,得,∴或.【点睛】本题考查了函数单调性和奇偶性的判断,考查了不等式恒成立问题,考查了数学运算能力.19、(1)..(2)【解析】(1)由求得,作出函数图象可知的范围;(2)由函数图象可知区间所属范围,列不等式示得结论【详解】(1)因为,所以.函数的大致图象如图所示令,得.故有3个不同的零点.即方程有3个不同的实根.由图可知.(2)由图象可知,函数在区间和上分别单调递增.因为,且函数在区间上为增函数,所以可得,解得.所以实数a的取值范围为.【点睛】本题考查由函数值求参数,考查分段函数的图象与性质.考查零点个数问题与转化思想.属于中档题20、(1)-1;(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年电子商务平台软件开发与运营服务合同2篇
- 网管业务培训课程设计
- 八年级历史下册复习提要课件
- 抽样调查课程设计
- 无主灯教学课程设计
- 花草移植课程设计
- 2024年艺术的语录
- 水源热泵课程设计
- 医务科护士处理医务事务
- 食品行业客服工作者感悟
- 杭州市西湖区2024年三年级数学第一学期期末学业质量监测试题含解析
- 2022-2023学年广东省广州市花都区六年级(上)期末英语试卷(含答案)
- 2024年湖南省高中学业水平合格考物理试卷真题(含答案详解)
- 机动车检测站质量手册(根据补充技术要求修订)
- 2024年(学习强国)思想政治理论知识考试题库与答案
- 上海上海市医疗急救中心招聘笔试历年典型考题及考点附答案解析
- 《大数据分析技术》课程标准
- 2024年河南农业职业学院单招职业适应性测试题库及参考答案
- 期末考试-公共财政概论-章节习题
- AED急救知识课件
- 高中物理课件:Tracker软件在高中物理实验教学中的应用-
评论
0/150
提交评论