上海市理工附中等七校2025届高一上数学期末教学质量检测模拟试题含解析_第1页
上海市理工附中等七校2025届高一上数学期末教学质量检测模拟试题含解析_第2页
上海市理工附中等七校2025届高一上数学期末教学质量检测模拟试题含解析_第3页
上海市理工附中等七校2025届高一上数学期末教学质量检测模拟试题含解析_第4页
上海市理工附中等七校2025届高一上数学期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市理工附中等七校2025届高一上数学期末教学质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则的值是A. B.C. D.2.为了得到函数的图像,可以将函数的图像A.向右平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向左平移个单位长度3.若定义在R上的偶函数满足,且当时,f(x)=x,则函数y=f(x)-的零点个数是A.6个 B.4个C.3个 D.2个4.已知过点和的直线与直线平行,则的值为()A. B.0C.2 D.105.已知向量,若与垂直,则的值等于A. B.C.6 D.26.下列哪组中的两个函数是同一函数()A与 B.与C.与 D.与7.已知,则等于()A. B.C. D.8.若函数的零点所在的区间为,则实数a的取值范围是()A. B.C. D.9.函数f(x)=x2-3x-4的零点是()A. B.C. D.10.已知,大小关系正确的是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某公司在甲、乙两地销售同一种农产品,利润(单位:万元)分别为,,其中x为销售量(单位:吨),若该公司在这两地共销售10吨农产品,则能获得的最大利润为______万元.12.已知幂函数的图象过点,且,则a的取值范围是______13.已知函数有两个零点,则___________14.写出一个能说明“若函数满足,则为奇函数”是假命题的函数:______15.设函数fx=ex-1,x≥a-xx2-5x+6,x<a,则当时,16.函数,的图象恒过定点P,则P点的坐标是_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知(1)求函数的单调递增区间与对称轴方程;(2)当时,求的最大值与最小值18.已知的一条内角平分线的方程为,其中,(1)求顶点的坐标;(2)求的面积19.已知函数(1)试判断函数的奇偶性并证明;20.已知函数为偶函数(1)求a的值,并证明在上单调递增;(2)求满足的x的取值范围21.已知集合,集合.(1)若,求和(2)若,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由可得,化简则,从而可得结果.【详解】,,故选C.【点睛】三角函数求值有三类,(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角2、B【解析】因为,所以为了得到函数的图像,可以将函数的图像向右平移个单位长度即可.选B3、B【解析】因为偶函数满足,所以的周期为2,当时,,所以当时,,函数的零点等价于函数与的交点个数,在同一坐标系中,画出的图象与的图象,如上图所示,显然的图象与的图象有4个交点.选B.点睛:本题考查了根的存在性及根的个数判断,以及函数与方程的思想,是中档题.根据函数零点和方程的关系进行转化是解答本题的关键4、A【解析】因为过点和的直线与直线平行,所以两直线的斜率相等.【详解】解:∵直线的斜率等于,∴过点和的直线的斜率也是,,解得,故选:A.【点睛】本题考查两斜率存在的直线平行的条件是斜率相等,以及斜率公式的应用.5、B【解析】,所以,则,故选B6、D【解析】根据同一函数的概念,逐项判断,即可得出结果.【详解】A选项,的定义域为,的定义域为,定义域不同,故A错;B选项,定义域为,的定义域为,定义域不同,故B错;C选项,的定义域为,的定义域为,定义域不同,故C错;D选项,与的定义域都为,且,对应关系一致,故D正确.故选:D.7、A【解析】利用换元法设,则,然后利用三角函数的诱导公式进行化简求解即可【详解】设,则,则,则,故选:8、C【解析】由函数的性质可得在上是增函数,再由函数零点存在定理列不等式组,即可求解得a的取值范围.【详解】易知函数在上单调递增,且函数零点所在的区间为,所以,解得故选:C9、D【解析】直接利用函数零点定义,解即可.【详解】由,解得或,函数零点是.故选:.【点睛】本题主要考查的是函数零点的求法,直接利用定义可以求解,是基础题.10、C【解析】利用“”分段法比较出三者的大小关系.【详解】由于,,,即,故选C.【点睛】本小题主要考查指数式、对数式比较大小,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、34【解析】设公司在甲地销售农产品吨,则在乙地销售农产品吨,根据利润函数表示出利润之和,利用配方法求出函数的最值即可【详解】设公司在甲地销售农产品()吨,则在乙地销售农产品吨,,利润为,又且故当时,能获得的最大利润为34万元故答案为:34.12、【解析】先求得幂函数的解析式,根据函数的奇偶性、单调性来求得的取值范围.【详解】设,则,所以,在上递增,且为奇函数,所以.故答案为:13、2【解析】根据函数零点的定义可得,进而有,整理计算即可得出结果.【详解】因为函数又两个零点,所以,即,得,即,所以.故答案为:214、(答案不唯一)【解析】根据余弦型函数的性质求解即可.【详解】解:因为,所以的周期为4,所以余弦型函数都满足,但不是奇函数故答案为:15、①.②.【解析】当时得到,令,再利用定义法证明在上单调递减,从而得到,令,,根据指数函数的性质得到函数的单调性,即可求出的最小值,即可得到的最小值;分别求出与的零点,根据恰有两个零点,即可求出的取值范围;【详解】解:当时,令,,设且,则因为且,所以,,所以,所以,所以在上单调递减,所以,令,,函数在定义域上单调递增,所以,所以的最小值为;对于,令,即,解得,对于,令,即,解得或或,因为fx=ex-1,x≥a-xx2-5x+6,x<a恰有两个零点,则和一定为的零点,不为的零点,所以,即;故答案为:;;16、【解析】令,解得,且恒成立,所以函数的图象恒过定点;故填.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)单调递增区间为,k∈Z.对称轴方程为,其中k∈Z(2)f(x)的最大值为2,最小值为–1【解析】(1)因为,由,求得,k∈Z,可得函数f(x)的单调递增区间为,k∈Z由,求得,k∈Z故f(x)的对称轴方程为,其中k∈Z(2)因为,所以,故有,故当即x=0时,f(x)的最小值为–1,当即时,f(x)的最大值为218、(1)点的坐标为.(2)24【解析】(1)先根据中点坐标公式以及直线垂直斜率的积等于列方程组求出点关于直线的对称点的坐标,根据两点式或点斜式可得直线的方程,与角平分线的方程联立可得顶点的坐标;(2)根据两点间的距离公式可得的值,再利用点到直线距离公式可得到直线:的距离,由三角形面积公式可得结果.试题解析:(1)由题意可得,点关于直线的对称点在直线上,则有解得,,即,由和,得直线的方程为,由得顶点的坐标为(2),到直线:的距离,故的面积为19、(1)为奇函数;证明见解析;(2).【解析】(1)利用奇函数的定义即证;(2)由题可得当时,为增函数,法一利用对勾函数的性质可得,即求;法二利用函数单调性的定义可得成立,即求.【小问1详解】当时,,则,当;当时,,满足;当时,,则,,所以对,均有,即函数为奇函数;【小问2详解】∵函数为R上的奇函数,且,,,所以函数在上为增函数,则在定义域内为增函数,解法一:因函数为奇函数,且在定义域内为增函数,则当时,为增函数当时,因为,只需要,则;解法二:因为函数为奇函数,且在定义域内为增函数,则当时,为增函数设对于任意,且,则有因为,则,又因为,则,欲使当时,为增函数,则,所以,当时,;;,所以,为R上增函数时,20、(1);证明见解析(2)【解析】(1)由偶函数的定义解方程可得a=1,再由单调性的定义,结合指数函数的单调性可得结论;(2)由偶函数的性质:,结合(1)的结论,原不等式化为,再由绝对值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论