版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省广州市第89中学高考数学试题(课标版)押题卷解析考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A. B. C. D.2.为虚数单位,则的虚部为()A. B. C. D.3.已知椭圆:的左,右焦点分别为,,过的直线交椭圆于,两点,若,且的三边长,,成等差数列,则的离心率为()A. B. C. D.4.已知为定义在上的奇函数,若当时,(为实数),则关于的不等式的解集是()A. B. C. D.5.已知是的共轭复数,则()A. B. C. D.6.已知复数z满足i•z=2+i,则z的共轭复数是()A.﹣1﹣2i B.﹣1+2i C.1﹣2i D.1+2i7.在直角坐标平面上,点的坐标满足方程,点的坐标满足方程则的取值范围是()A. B. C. D.8.已知集合A={y|y},B={x|y=lg(x﹣2x2)},则∁R(A∩B)=()A.[0,) B.(﹣∞,0)∪[,+∞)C.(0,) D.(﹣∞,0]∪[,+∞)9.已知变量的几组取值如下表:12347若与线性相关,且,则实数()A. B. C. D.10.如果直线与圆相交,则点与圆C的位置关系是()A.点M在圆C上 B.点M在圆C外C.点M在圆C内 D.上述三种情况都有可能11.设为虚数单位,复数,则实数的值是()A.1 B.-1 C.0 D.212.设全集,集合,则=()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.不等式的解集为________14.已知数列递增的等比数列,若,,则______.15.四边形中,,,,,则的最小值是______.16.已知四棱锥,底面四边形为正方形,,四棱锥的体积为,在该四棱锥内放置一球,则球体积的最大值为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知矩阵不存在逆矩阵,且非零特低值对应的一个特征向量,求的值.18.(12分)在如图所示的多面体中,四边形是矩形,梯形为直角梯形,平面平面,且,,.(1)求证:平面.(2)求二面角的大小.19.(12分)已知数列是各项均为正数的等比数列,数列为等差数列,且,,.(1)求数列与的通项公式;(2)求数列的前项和;(3)设为数列的前项和,若对于任意,有,求实数的值.20.(12分)在平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,直线极坐标方程为.若直线交曲线于,两点,求线段的长.21.(12分)已知函数,.(1)求曲线在点处的切线方程;(2)求函数的极小值;(3)求函数的零点个数.22.(10分)如图,已知椭圆的右焦点为,,为椭圆上的两个动点,周长的最大值为8.(Ⅰ)求椭圆的标准方程;(Ⅱ)直线经过,交椭圆于点,,直线与直线的倾斜角互补,且交椭圆于点,,,求证:直线与直线的交点在定直线上.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
详解:由题意知,题干中所给的是榫头,是凸出的几何体,求得是卯眼的俯视图,卯眼是凹进去的,即俯视图中应有一不可见的长方形,且俯视图应为对称图形故俯视图为故选A.点睛:本题主要考查空间几何体的三视图,考查学生的空间想象能力,属于基础题。2、C【解析】
利用复数的运算法则计算即可.【详解】,故虚部为.故选:C.【点睛】本题考查复数的运算以及复数的概念,注意复数的虚部为,不是,本题为基础题,也是易错题.3、C【解析】
根据等差数列的性质设出,,,利用勾股定理列方程,结合椭圆的定义,求得.再利用勾股定理建立的关系式,化简后求得离心率.【详解】由已知,,成等差数列,设,,.由于,据勾股定理有,即,化简得;由椭圆定义知的周长为,有,所以,所以;在直角中,由勾股定理,,∴离心率.故选:C【点睛】本小题主要考查椭圆离心率的求法,考查椭圆的定义,考查等差数列的性质,属于中档题.4、A【解析】
先根据奇函数求出m的值,然后结合单调性求解不等式.【详解】据题意,得,得,所以当时,.分析知,函数在上为增函数.又,所以.又,所以,所以,故选A.【点睛】本题主要考查函数的性质应用,侧重考查数学抽象和数学运算的核心素养.5、A【解析】
先利用复数的除法运算法则求出的值,再利用共轭复数的定义求出a+bi,从而确定a,b的值,求出a+b.【详解】i,∴a+bi=﹣i,∴a=0,b=﹣1,∴a+b=﹣1,故选:A.【点睛】本题主要考查了复数代数形式的乘除运算,考查了共轭复数的概念,是基础题.6、D【解析】
两边同乘-i,化简即可得出答案.【详解】i•z=2+i两边同乘-i得z=1-2i,共轭复数为1+2i,选D.【点睛】的共轭复数为7、B【解析】
由点的坐标满足方程,可得在圆上,由坐标满足方程,可得在圆上,则求出两圆内公切线的斜率,利用数形结合可得结果.【详解】点的坐标满足方程,在圆上,在坐标满足方程,在圆上,则作出两圆的图象如图,设两圆内公切线为与,由图可知,设两圆内公切线方程为,则,圆心在内公切线两侧,,可得,,化为,,即,,的取值范围,故选B.【点睛】本题主要考查直线的斜率、直线与圆的位置关系以及数形结合思想的应用,属于综合题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,尤其在解决选择题、填空题时发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是运用这种方法的关键是正确作出曲线图象,充分利用数形结合的思想方法能够使问题化难为简,并迎刃而解.8、D【解析】
求函数的值域得集合,求定义域得集合,根据交集和补集的定义写出运算结果.【详解】集合A={y|y}={y|y≥0}=[0,+∞);B={x|y=lg(x﹣2x2)}={x|x﹣2x2>0}={x|0<x}=(0,),∴A∩B=(0,),∴∁R(A∩B)=(﹣∞,0]∪[,+∞).故选:D.【点睛】该题考查的是有关集合的问题,涉及到的知识点有函数的定义域,函数的值域,集合的运算,属于基础题目.9、B【解析】
求出,把坐标代入方程可求得.【详解】据题意,得,所以,所以.故选:B.【点睛】本题考查线性回归直线方程,由性质线性回归直线一定过中心点可计算参数值.10、B【解析】
根据圆心到直线的距离小于半径可得满足的条件,利用与圆心的距离判断即可.【详解】直线与圆相交,圆心到直线的距离,即.也就是点到圆的圆心的距离大于半径.即点与圆的位置关系是点在圆外.故选:【点睛】本题主要考查直线与圆相交的性质,考查点到直线距离公式的应用,属于中档题.11、A【解析】
根据复数的乘法运算化简,由复数的意义即可求得的值.【详解】复数,由复数乘法运算化简可得,所以由复数定义可知,解得,故选:A.【点睛】本题考查了复数的乘法运算,复数的意义,属于基础题.12、A【解析】
先求得全集包含的元素,由此求得集合的补集.【详解】由解得,故,所以,故选A.【点睛】本小题主要考查补集的概念及运算,考查一元二次不等式的解法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
通过平方,将无理不等式化为有理不等式求解即可。【详解】由得,解得,所以解集是。【点睛】本题主要考查无理不等式的解法。14、【解析】
,建立方程组,且,求出,进而求出的公比,即可求出结论.【详解】数列递增的等比数列,,,解得,所以的公比为,.
故答案为:.【点睛】本题考查等比数列的性质、通项公式,属于基础题.15、【解析】
在中利用正弦定理得出,进而可知,当时,取最小值,进而计算出结果.【详解】,如图,在中,由正弦定理可得,即,故当时,取到最小值为.故答案为:.【点睛】本题考查解三角形,同时也考查了常见的三角函数值,考查逻辑推理能力与计算能力,属于中档题.16、【解析】
由题知,该四棱锥为正四棱锥,作出该正四棱锥的高和斜高,连接,则球心O必在的边上,设,由球与四棱锥的内切关系可知,设,用和表示四棱锥的体积,解得和的关系,进而表示出内切球的半径,并求出半径的最大值,进而求出球的体积的最大值.【详解】设,,由球O内切于四棱锥可知,,,则,球O的半径,,,,当且仅当时,等号成立,此时.故答案为:.【点睛】本题考查了棱锥的体积问题,内切球问题,考查空间想象能力,属于较难的填空压轴题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【解析】
由不存在逆矩阵,可得,再利用特征多项式求出特征值3,0,,利用矩阵乘法运算即可.【详解】因为不存在逆矩阵,,所以.矩阵的特征多项式为,令,则或,所以,即,所以,所以【点睛】本题考查矩阵的乘法及特征值、特征向量有关的问题,考查学生的运算能力,是一道容易题.18、(1)见解析;(2)【解析】
(1)根据面面垂直性质及线面垂直性质,可证明;由所给线段关系,结合勾股定理逆定理,可证明,进而由线面垂直的判定定理证明平面.(2)建立空间直角坐标系,写出各个点的坐标,并求得平面和平面的法向量,由空间向量法求得两个平面夹角的余弦值,结合图形即可求得二面角的大小.【详解】(1)证明:∵平面平面ABEG,且,∴平面,∴,由题意可得,∴,∵,且,∴平面.(2)如图所示,建立空间直角坐标系,则,,,,,,.设平面的法向量是,则,令,,由(1)可知平面的法向量是,∴,由图可知,二面角为钝二面角,所以二面角的大小为.【点睛】本题考查了线面垂直的判定,面面垂直及线面垂直的性质应用,空间向量法求二面角的大小,属于中档题.19、(1),(2)(3)【解析】
(1)假设公差,公比,根据等差数列和等比数列的通项公式,化简式子,可得,,然后利用公式法,可得结果.(2)根据(1)的结论,利用错位相减法求和,可得结果.(3)计算出,代值计算并化简,可得结果.【详解】解:(1)依题意:,即,解得:所以,(2),,,上面两式相减,得:则即所以,(3),所以由得,,即【点睛】本题主要考查等差数列和等比数列的综合应用,以及利用错位相减法求和,属基础题.20、【解析】
由,化简得,由,所以直线的直角坐标方程为,因为曲线的参数方程为,整理得,直线的方程与曲线的方程联立,,整理得,设,则,根据弦长公式求解即可.【详解】由,化简得,又因为,所以直线的直角坐标方程为,因为曲线的参数方程为,消去,整理得,将直线的方程与曲线的方程联立,,消去,整理得,设,则,所以,将,代入上式,整理得.【点睛】本题考查参数方程,极坐标方程的应用,结合弦长公式的运用,属于中档题.21、(1);(2)极小值;(3)函数的零点个数为.【解析】
(1)求出和的值,利用点斜式可得出所求切线的方程;(2)利用导数分析函数的单调性,进而可得出该函数的极小值;(3)由当时,以及,结合函数在区间上的单调性可得出函数的零点个数.【详解】(1)因为,所以.所以,.所以曲线在点处的切线为;(2)因为,令,得或.列表如下:0极大值极小值所以,函数的单调递增区间为和,单调递减区间为,所以,当时,函数有极小值;(3)当时,,且.由(2)可知,函数在上单调递增,所以函数的零点个数为.【点睛】本题考查利用导数求函数的切线方程、极值以及利用导数研究函数的零点问题,考查分析问题和解决问题的能力,属于中等题.22、(Ⅰ);(Ⅱ)详见解析.【解析】
(Ⅰ)由椭圆的定义可得,周长取最大值时,线段过点,可求出,从而求出椭圆的标准方程;(Ⅱ)设直线,直线,,,,.把
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年高端装备制造技术引进与合作合同
- 2025年长春货运从业资格证新政
- 2024标准房屋买卖协议书
- 2024广告制作合同
- 2024年钢筋工班组临时劳务合同
- 二零二五年度夜景照明设备安装与调试合同样本3篇
- 2024年粤教版七年级物理下册阶段测试试卷含答案
- 推进未来法律人才培养的路径设计与战略实施
- 2025年沪教版必修2英语下册月考试卷
- 2025年湘教版八年级化学下册月考试卷
- 单位工程、分部工程、分项工程及检验批划分方案
- 七年级数学资料培优汇总精华
- 器乐Ⅰ小提琴课程教学大纲
- 主债权合同及不动产抵押合同(简化版本)
- 服装厂安全生产责任书
- JGJ202-2010建筑施工工具式脚手架安全技术规范
- 液压爬模系统作业指导书
- 2018-2019学年北京市西城区人教版六年级上册期末测试数学试卷
- SFC15(发送)和SFC14(接收)组态步骤
- LX电动单梁悬挂说明书
- 旅行社公司章程53410
评论
0/150
提交评论