版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省五校2025届高一数学第一学期期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数y=(12)x的图象与函数y=logax(a>0,A.[ 2C.[ 82.已知集合,则函数的最小值为()A.4 B.2C.-2 D.-43.已知集合,,则集合()A. B.C. D.4.设全集为,集合,,则()A. B.C. D.5.设,,那么等于A. B.C. D.6.已知角的终边在射线上,则的值为()A. B.C. D.7.函数单调递增区间为A. B.C. D.8.下列命题正确的是A.在空间中两条直线没有公共点,则这两条直线平行B.一条直线与一个平面可能有无数个公共点C.经过空间任意三点可以确定一个平面D.若一个平面上有三个点到另一个平面的距离相等,则这两个平面平行9.若函数的零点与的零点之差的绝对值不超过0.25,则可以是A B.C. D.10.2019年7月,中国良渚古城遗址获准列入世界遗产名录,标志着中华五千年文明史得到国际社会认可.考古科学家在测定遗址年龄的过程中利用了“放射性物质因衰变而减少”这一规律.已知样本中碳14的质量N随时间t(单位:年)的衰变规律满足(表示碳14原有的质量).经过测定,良渚古城遗址文物样本中碳14的质量是原来的至,据此推测良渚古城存在的时期距今约()年到5730年之间?(参考数据:,)A.4011 B.3438C.2865 D.2292二、填空题:本大题共6小题,每小题5分,共30分。11.幂函数的图像在第___________象限.12.已知角的终边过点,求_________________.13.已知,且是第三象限角,则_____;_____14.已知是第四象限角,,则______15.已知函数满足,当时,,若不等式的解集是集合的子集,则a的取值范围是______16.,,且,则的最小值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.利用拉格朗日(法国数学家,1736-1813)插值公式,可以把二次函数表示成的形式.(1)若,,,,,把的二次项系数表示成关于f的函数,并求的值域(此处视e为给定的常数,答案用e表示);(2)若,,,,求证:.18.已知△ABC的内角A,B,C的对边分别为a,b,c,若c=2a,bsinB﹣asinA=asinC(Ⅰ)求sinB的值;(Ⅱ)求sin(2B+)的值19.已知圆O:,点,点,直线l过点P(1)若直线l与圆O相切,求l的方程;(2)若直线l与圆O交于不同的两点A,B,线段AB的中点为M,且M的纵坐标为-,求△NAB的面积20.已知函数为奇函数,,其中(1)若函数h(x)的图象过点A(1,1),求实数m和n的值;(2)若m=3,试判断函数在上的单调性并证明;(3)设函数,若对每一个不小于3的实数,都恰有一个小于3的实数,使得成立,求实数m的取值范围21.设函数,.(1)判断函数的单调性,并用定义证明;(2)若关于x的方程在上有解,求实数a的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由已知中两函数的图象交于点P( 由指数函数的性质可知,若x0≥2,则0<y由于x0≥2,所以a>1且4a点睛:本题考查了指数函数与对数函数的应用,其中解答中涉及到指数函数的图象与性质、对数函数的图象与性质,以及不等式关系式得求解等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,本题的解答中熟记指数函数与对数函数的图象与性质,构造关于a的不等式是解答的关键,试题比较基础,属于基础题.2、D【解析】因为集合,所以,设,则,所以,且对称轴为,所以最小值为,故选D3、B【解析】解不等式求得集合、,由此求得.【详解】,,所以.故选:B4、B【解析】先求出集合B的补集,再根据集合的交集运算求得答案.【详解】因为,所以,故,故选:B.5、B【解析】由题意得.选B6、A【解析】求三角函数值不妨作图说明,直截了当.【详解】依题意,作图如下:假设直线的倾斜角为,则角的终边为射线OA,在第四象限,,,,用同角关系:,得;∴;故选:A.7、A【解析】,所以.故选A8、B【解析】根据平面的基本性质和空间中两直线的位置关系,逐一判定,即可得到答案【详解】由题意,对于A中,在空间中两条直线没有公共点,则这两条直线平行或异面,所以不正确;对于B中,当一条直线在平面内时,此时直线与平面可能有无数个公共点,所以是正确的;对于C中,经过空间不共线的三点可以确定一个平面,所以是错误的;对于D中,若一个平面上有三个点到另一个平面的距离相等,则这两个平面平行或相交,所以不正确,故选B【点睛】本题主要考查了平面的基本性质和空间中两直线的位置关系,其中解答中熟记平面的基本性质和空间中两直线的位置关系是解答的关键,着重考查了推理与论证能力,属于基础题9、A【解析】因为函数g(x)=4x+2x-2在R上连续,且,,设函数的g(x)=4x+2x-2的零点为,根据零点存在性定理,有,则,所以,又因为f(x)=4x-1的零点为,函数f(x)=(x-1)2的零点为x=1,f(x)=ex-1的零点为,f(x)=ln(x-0.5)的零点为,符合为,所以选A考点:零点的概念,零点存在性定理10、A【解析】由已知条件可得,两边同时取以2为底的对数,化简计算可求得答案【详解】因为碳14的质量是原来的至,所以,两边同时取以2为底的对数得,所以,所以,则推测良渚古城存在的时期距今约在4011年到5730年之间.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据幂函数的定义域及对应值域,即可确定图像所在的象限.【详解】由解析式知:定义域为,且值域,∴函数图像在一、二象限.故答案为:一、二.12、【解析】先求出,再利用三角函数定义,即可得出结果.【详解】依题意可得:,故答案为:【点睛】本题考查了利用终边上点来求三角函数值,考查了理解辨析能力和运算能力,属于基础题目.13、①.##②.##0.96【解析】利用平方关系求出,再利用商数关系及二倍角的正弦公式计算作答.【详解】因,且是第三象限角,则,所以,.故答案为:;14、【解析】利用同角三角函数的基本关系求出的值,在利用诱导公式可求得结果.【详解】因为是第四象限角,,则,所以,.故答案为:.15、【解析】先由已知条件判断出函数的单调性,再把不等式转化为整式不等式,再利用子集的要求即可求得a的取值范围.【详解】由可知,关于对称,又,当时,单调递减,故不等式等价于,即,因为不等式解集是集合的子集,所以,解得故答案为:16、3【解析】根据基本不等式“1”的用法求解即可.【详解】解:解法一:因为所以当且仅当时等号成立.解法二:设,,则,所以当且仅当时等号成立.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析【解析】(1)根据已知写出二次项系数后可得;;(2)注意到,因此可以在不等式两边同乘以分母后化简不等式,然后比较可得(可作差或凑配证明)【小问1详解】由题意又,所以即的值域是;【小问2详解】因为,,,,所以,因为,,,,所以,所以,所以,因为,,,,所以,所以,所以,综上,原不等式成立18、(Ⅰ)(Ⅱ)【解析】(Ⅰ)根据条件由正弦定理得,又c=2a,所以,由余弦定理算出,进而算出;(Ⅱ)由二倍角公式算出,代入两角和的正弦公式计算即可.【详解】(Ⅰ)bsinB﹣asinA=asinC,所以由正弦定理得,又c=2a,所以,由余弦定理得:,又,所以;(Ⅱ),.【点睛】本题主要考查了正余弦定理应用,运用二倍角公式和两角和的正弦公式求值,考查了学生的运算求解能力.19、(1)或(2)【解析】(1)根据题意,分直线斜率存在与不存在两种情况讨论求解,当直线斜率存在时,根据点到直线的距离公式求参数即可;(2)设直线l方程为,,进而与圆的方程联立得中点的坐标,,解方程得直线方程,再求三角形面积即可.【小问1详解】解:若直线l的斜率不存在,则l的方程为,此时直线l与圆O相切,符合题意;若直线l的斜率存在,设直线l的方程为,因为直线l与圆O相切,所以圆心(0,0)到l的距离为2,即,解得,所以直线l的方程为,即故直线l的方程为或【小问2详解】解:设直线l的方程为,因为直线l与圆O相交,所以结合(1)得联立方程组消去y得,设,则,设中点,,①代入直线l的方程得,②解得或(舍去)所以直线l的方程为因为圆心到直线l的距离,所以因为N到直线l的距离所以20、(1)(2)单调递增,证明见解析(3)【解析】(1)运用奇函数的定义可得,再由图象经过点,解方程可得;(2)在,递增.运用单调性的定义,结合因式分解和指数函数的单调性,即可得证;(3)求得当时,;当时,;分别讨论,,,运用基本不等式和函数的单调性,求得的范围【小问1详解】函数为奇函数,可得,即,则,由的图象过,可得(1),即,解得,故;【小问2详解】,可得,,在上递增证明:设,则,由,可得,,,则,即,可得,递增;【小问3详解】当时,;当时,①时,时,;时,不满足条件,舍去;②当时,时,,,时,,,,由题意可得,,,可得,即;综上可得;③当时,时,,,时,,,,由题意可得,,,可得,可令,则在上递减,,故由,可得,即,综上可得,所以的取值范围是【点睛】本题考查函数的奇偶性和单调性的定义和运用,考查分类讨论思想方法和化简整理的运算能力,属于难题21、(1)在上为增
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第一、二单元 综合测试题 上学期初中语文八年级上册
- 二零二四年度股权转让合同上诉状2篇
- 二手商品房买卖合同(2024版)及房产交易税款承担2篇
- 热泵工程项目融资合同(2024年)2篇
- 腻子粉合同范例
- 自动售货柜投放合同模板
- 租雨棚合同范例
- 石材人工安装合同范例
- 转让附属合同范例
- 猎头服务业务加盟合同范例
- 2024-2025一年级上册科学教科版2.4《气味告诉我们》课件
- 中国文化概要智慧树知到答案2024年温州大学
- 高级护理实践智慧树知到期末考试答案章节答案2024年浙江中医药大学
- 高教版【中职专用】《中国特色社会主义》期末试卷+答案
- 贾玲陈赫多人小品《欢喜密探》剧本台词完整版
- 宣讲《铸牢中华民族共同体意识》全文课件
- MOOC 跨文化交际通识通论-扬州大学 中国大学慕课答案
- 国家开放大学《四史通讲》形考任务专题1-6自测练习参考答案
- 10000中国普通人名大全
- 电厂固定资产目录(所有设备)
- 普通介绍信格式参考
评论
0/150
提交评论