安徽省“庐巢六校联盟”2025届高一数学第一学期期末统考试题含解析_第1页
安徽省“庐巢六校联盟”2025届高一数学第一学期期末统考试题含解析_第2页
安徽省“庐巢六校联盟”2025届高一数学第一学期期末统考试题含解析_第3页
安徽省“庐巢六校联盟”2025届高一数学第一学期期末统考试题含解析_第4页
安徽省“庐巢六校联盟”2025届高一数学第一学期期末统考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省“庐巢六校联盟”2025届高一数学第一学期期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的定义域为,命题为奇函数,命题,那么是的()A.充分必要条件 B.既不充分也不必要条件C.充分不必要条件 D.必要不充分条件2.已知函数,且函数恰有三个不同的零点,则实数的取值范围是A. B.C. D.3.甲、乙二人参加某体育项目训练,近期的八次测试得分情况如图,则下列结论正确的是()A.甲得分的极差大于乙得分的极差 B.甲得分的75%分位数大于乙得分的75%分位数C.甲得分的平均数小于乙得分的平均数 D.甲得分的标准差小于乙得分的标准差4.若将函数图象向左平移个单位,则平移后的图象对称轴为()A. B.C. D.5.定义在R上的偶函数f(x)满足,当x∈[0,1]时,则函数在区间上的所有零点的和为()A.10 B.9C.8 D.66.根据下表数据,可以判定方程的根所在的区间是()123400.6911.101.3931.51.1010.75A. B.C. D.7.已知是定义域为的偶函数,当时,,则的解集为()A. B.C. D.8.已知向量和的夹角为,且,则A. B.C. D.9.已知直线⊥平面,直线平面,给出下列命题:①∥②⊥∥③∥⊥④⊥∥其中正确命题的序号是A.①③ B.②③④C.①②③ D.②④10.已知集合A={x|<2},B={x|log2x>0},则()A. B.A∩B=C.或 D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知角的终边经过点,则的值等于______.12.设是R上的奇函数,且当时,,则__________13.角的终边经过点,则的值为______14.设函数,若关于的不等式的解集为,则__________15.若圆锥的侧面展开图是圆心角为的扇形,则该圆锥的侧面积与底面积之比为___________.16.设角的顶点与坐标原点重合,始变与轴的非负半轴重合,若角的终边上一点的坐标为,则的值为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设全集为,集合,(1)分别求,;(2)已知,若,求实数的取值范围构成的集合18.为贯彻党中央、国务院关于“十三五”节能减排的决策部署,2022年某企业计划引进新能源汽车生产设备.通过市场分析,全年需投人固定成本2500万元,生产百辆需另投人成本万元.由于起步阶段生产能力有限,不超过120,且经市场调研,该企业决定每辆车售价为8万元,且全年内生产的汽车当年能全部销售完.(1)求2022年的利润(万元)关于年产量(百辆)的函数关系式(利润销售额-成本);(2)2022年产量多少百辆时,企业所获利润最大?并求出最大利润.19.我们知道,函数的图象关于坐标原点成中心对称图形的充要条件是函数为奇函数,有同学发现可以将其推广为:函数的图象关于点成中心对称图形的充要条件是函数为奇函数.若函数的图象关于点对称,且当时,.(1)求的值;(2)设函数.(i)证明函数的图象关于点对称;(ii)若对任意,总存在,使得成立,求的取值范围.20.如图所示,在直三棱柱中,,,,,点是中点()求证:平面()求直线与平面所成角的正切值21.在初中阶段函数学习中,我们经历了“确定函数的表达式—利用函数图象研究其性质”,函数图象在探索函数的性质中有非常重要的作用,下面我们对已知经过点的函数的图象和性质展开研究.探究过程如下,请补全过程:x…0179…y…m0n…(1)①请根据解析式列表,则_________,___________;②在给出的平面直角坐标系中描点,并画出函数图象;(2)写出这个函数的一条性质:__________;(3)已知函数,请结合两函数图象,直接写出不等式的解集:____________.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据奇函数的性质及命题充分必要性的概念直接判断.【详解】为奇函数,则,但,无法得函数为奇函数,例如,满足,但是为偶函数,所以是的充分不必要条件,故选:C.2、A【解析】函数恰有三个不同的零点等价于与有三个交点,再分别画出和的图像,通过观察图像得出a的范围.【详解】解:方程所以函数恰有三个不同的零点等价于与有三个交点记,画出函数简图如下画出函数如图中过原点虚线l,平移l要保证图像有三个交点,向上最多平移到l’位置,向下平移一直会有三个交点,所以,即故选A.【点睛】本题考查了函数的零点问题,解决函数零点问题常转化为两函数交点问题3、B【解析】根据图表数据特征进行判断即可得解.【详解】乙组数据最大值29,最小值5,极差24,甲组最大值小于29,最小值大于5,所以A选项说法错误;甲得分的75%分位数是20,,乙得分的75%分位数17,所以B选项说法正确;甲组具体数据不易看出,不能判断C选项;乙组数据更集中,标准差更小,所以D选项错误故选:B4、A【解析】由图象平移写出平移后的解析式,再由正弦函数的性质求对称轴方程.【详解】,令,,则且.故选:A.5、A【解析】根据条件可得函数f(x)的图象关于直线x=1对称;根据函数的解析式及奇偶性,对称性可得出函数f(x)在的图象;令,画出其图象,进而得出函数的图象.根据函数图象及其对称性,中点坐标公式即可得出结论【详解】因为定义在R上的偶函数f(x)满足,所以函数f(x)的图象关于直线x=1对称,当x∈[0,1]时,,可以得出函数f(x)在上的图象,进而得出函数f(x)在的图象.画出函数,的图象;令,可得周期T1,画出其图象,进而得出函数的图象由图象可得:函数在区间上共有10个零点,即5对零点,每对零点的中点都为1,所以所有零点的和为.故选:A6、B【解析】构造函数,通过表格判断,判断零点所在区间,即得结果.【详解】设函数,易见函数在上递增,由表可知,,故,由零点存在定理可知,方程的根即函数的零点在区间上.故选:B.7、C【解析】首先画出函数的图象,并当时,,由图象求不等式的解集.【详解】由题意画出函数的图象,当时,,解得,是偶函数,时,,由图象可知或,解得:或,所以不等式的解集是.故选:C【点睛】本题考查函数图象的应用,利用函数图象解不等式,意在考查数形结合分析问题和解决问题的能力,属于几次题型.8、D【解析】根据数量积的运算律直接展开,将向量的夹角与模代入数据,得到结果【详解】=8+3-18=8+3×2×3×-18=-1,故选D.【点睛】本题考查数量积的运算,属于基础题9、A【解析】利用线面、面面平行的性质和判断以及线面、面面垂直的性质和判断可得结果.【详解】②若,则与不一定平行,还可能为相交和异面;④若,则与不一定平行,还可能是相交.故选A.【点睛】本题是一道关于线线、线面、面面关系的题目,解答本题的关键是熟练掌握直线与平面和平面与平面的平行、垂直的性质定理和判断定理.10、A【解析】先分别求出集合A和B,再利用交集定义和并集定义能求出结果【详解】由2-x<2得x>-1,所以A={x|x>-1};由log2x>0得x>1,所以B={x|x>1}.所以A∩B={x|x>1}.故选A【点睛】本题考查交集、并集的求法及应用,考查指数对数不等式的解法,是基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据三角函数定义求出、的值,由此可求得的值.【详解】由三角函数的定义可得,,因此,.故答案为:.12、【解析】由函数的性质得,代入当时的解析式求出的值,即可得解.【详解】当时,,,是上的奇函数,故答案为:13、【解析】以三角函数定义分别求得的值即可解决.【详解】由角的终边经过点,可知则,,所以故答案为:14、【解析】根据不等式的解集可得、、为对应方程的根,分析两个不等式对应方程的根,即可得解.【详解】由于满足,即,可得,所以,,所以,方程的两根分别为、,而可化为,即,所以,方程的两根分别为、,,且不等式解集为,所以,,解得,则,因此,.故答案为:.【点睛】关键点点睛:本题主要考查一元二次不等式与方程之间的关系,即不等式解集的端点即为对应方程的根,本题在理解、、分别为方程、的根,而两方程含有公共根,进而可得出关于实数的等式,即可求解.15、【解析】设圆锥的底面半径为r,母线长为l,根据圆锥的侧面展开图是圆心角为的扇形,有,即,然后分别求得侧面积和底面积即可.【详解】设圆锥的底面半径为r,母线长为l,由题意得:,即,所以其侧面积是,底面积是,所以该圆锥的侧面积与底面积之比为故答案为:16、【解析】三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),或或;(2)【解析】(1)解一元二次不等式求得集合,由交集、并集和补集的概念计算可得结果;(2)根据集合的包含关系可构造不等式组求得结果.【详解】(1),则或,,或或;(2),,,解得:,则实数的取值范围构成的集合为.18、(1)(2)2022年产量为100百辆时,企业所获利润最大,最大利润为1600万元【解析】(1)直接由题意分类写出2022年的利润(万元)关于年产量(百辆)的函数关系式;(2)分别利用配方法与基本不等式求出两段函数的最大值,求最大值中的最大者得结论【小问1详解】由题意得:当年产量为百辆时,全年销售额为万元,则,所以当时,当时,,所以【小问2详解】由(1)知:当时,,所以当时,取得最大值,最大值为1500万元;当时,,当且仅当,即时等号成立,因为,所以2022年产量为100百辆时,企业所获利润最大,最大利润为1600万元.19、(1);(2)(i)证明见解析;(ii).【解析】(1)根据题意∵为奇函数,∴,令x=1即可求出;(2)(i)验证为奇函数即可;(ii))求出在区间上的值域为A,记在区间上的值域为,则.由此问题转化为讨论f(x)的值域B,分,,三种情况讨论即可.【小问1详解】∵为奇函数,∴,得,则令,得.【小问2详解】(i),∵为奇函数,∴为奇函数,∴函数的图象关于点对称.(ii)在区间上单调递增,∴在区间上的值域为,记在区间上的值域为,由对,总,使得成立知,①当时,上单调递增,由对称性知,在上单调递增,∴在上单调递增,只需即可,得,∴满足题意;②当时,在上单调递减,在上单调递增,由对称性知,在上单调递增,在上单调递减,∴在上单调递减,在上单调递增,在上单调递减,∴或,当时,,,∴满足题意;③当时,在上单调递减,由对称性知,在上单调递减,∴在上单调递减,只需即可,得,∴满足题意.综上所述,的取值范围为.20、(1)见解析(2).【解析】(1)设BC1与CB1交于点O,连接OD,利用三角形中位线性质,证明OD∥AC1,利用线面平行的判定,可得AC1∥平面CDB1(2)过D作DE⊥BC,连结B1E,则DE⊥平面BCC1B1,于是∠DB1E为直线DB1与平面BCC1B1所成的角.利用勾股定理求出DE,B1E,计算tan∠DB1E【详解】(1)证明:设BC1与CB1交于点O,则O为BC1的中点在△ABC1中,连接OD,∵D,O分别为AB,BC1的中点,∴OD为△ABC1的中位线,∴OD∥AC1,又AC1⊄平面CDB1,OD⊂平面CDB1,∴AC1∥平面CDB1(2)过D作DE⊥BC,连结B1E,则DE⊥平面BCC1B1,∴∠DB1E为直线DB1与平面BCC1B1所成的角∵D是AB的中点,∴DE,BE,∴B1E∴tan∠DB1E【点晴】本题考查了线面平行的判定,线面角的计算,属于中档题21、(1)①,;②答案见解析(2)函数的最小

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论