版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届西藏拉萨片八校高二上数学期末教学质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某校去年有1100名同学参加高考,从中随机抽取50名同学总成绩进行分析,在这个调查中,下列叙述错误的是A.总体是:1100名同学的总成绩 B.个体是:每一名同学C.样本是:50名同学的总成绩 D.样本容量是:502.已知复数满足(其中为虚数单位),则复数的虚部为()A. B.C. D.3.已知椭圆方程为,点在椭圆上,右焦点为F,过原点的直线与椭圆交于A,B两点,若,则椭圆的方程为()A. B.C. D.4.已知向量,则()A. B.C. D.5.过抛物线的焦点的直线交抛物线于不同的两点,则的值为A.2 B.1C. D.46.已知椭圆的短轴长为8,且一个焦点是圆的圆心,则该椭圆的左顶点为()A B.C. D.7.设m,n是两条不同直线,,是两个不同平面,则下列说法错误的是()A.若,,则; B.若,,则;C.若,,则; D.若,,则8.已知命题:,,命题:,,则()A.是假命题 B.是真命题C.是真命题 D.是假命题9.正方体的棱长为2,E,F,G分别为,AB,的中点,则直线ED与FG所成角的余弦值为()A. B.C. D.10.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组可能性相同,则这两位同学参加同一个兴趣小组的概率为A. B.C. D.11.已知,则()A. B.C. D.12.已知,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.过圆内的点作一条直线,使它被该圆截得的线段最短,则直线的方程是______14.等比数列的各项均为正数,且,则__________.15.已知分别是平面α,β,γ的法向量,则α,β,γ三个平面中互相垂直的有________对16.以下四个关于圆锥曲线的命题中:①设A、B为两个定点,k为非零常数,若,则动点P的轨迹为双曲线;②抛物线焦点坐标是;③过定圆C上一定点A作圆的动弦AB,O为坐标原点,若,则动点P的轨迹为椭圆;④曲线与曲线(且)有相同的焦点其中真命题的序号为______(写出所有真命题的序号.)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知命题p:,命题q:.(1)若命题p为真命题,求实数x的取值范围.(2)若p是q的充分条件,求实数m的取值范围;18.(12分)某工厂修建一个长方体无盖蓄水池,其容积为4800立方米,深度为3米.池底每平方米的造价为150元,池壁每平方米的造价为120元.设池底长方形长为x米(1)求底面积,并用含x的表达式表示池壁面积;(2)怎样设计水池能使总造价最低?最低造价是多少?19.(12分)已知三个条件①圆心在直线上;②圆的半径为2;③圆过点在这三个条件中任选一个,补充在下面的问题中,并作答(注:如果选择多个条件分别解答,按第一个解答计分)(1)已知圆过点且圆心在轴上,且满足条件________,求圆的方程;(2)在(1)的条件下,直线与圆交于、两点,求弦长的最小值及相应的值20.(12分)已知数列满足,().(1)证明:数列是等比数列,并求出数列的通项公式;(2)数列满足:(),求数列的前项和.21.(12分)设椭圆的左焦点为,上顶点为.已知椭圆的短轴长为4,离心率为(1)求椭圆的方程;(2)设点在椭圆上,且异于椭圆的上、下顶点,点为直线与轴的交点,点且(为原点),求直线的斜率22.(10分)已知函数.(1)记函数,当时,讨论函数的单调性;(2)设,若存在两个不同的零点,证明:为自然对数的底数).
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】采用逐一验证法,根据总体,个体,样本的概念,可得结果.【详解】据题意:总体是1100名同学的总成绩,故A正确个体是每名同学的总成绩,故B错样本是50名同学的总成绩,故C正确样本容量是:50,故D正确故选:B【点睛】本题考查总体,个体,样本的概念,属基础题.2、A【解析】由题目条件可得,即,然后利用复数的运算法则化简.【详解】因为,所以,则故复数的虚部为.故选:A.【点睛】本题考查复数的相关概念及复数的乘除运算,按照复数的运算法则化简计算即可,较简单.3、A【解析】根据椭圆的性质可得,则椭圆方程可求.【详解】由点在椭圆上得,由椭圆的对称性可得,则,故椭圆方程为.故选:A.4、B【解析】根据向量加减法运算的坐标表示即可得到结果【详解】故选:B.5、D【解析】本题首先可以通过直线交抛物线于不同的两点确定直线的斜率存在,然后设出直线方程并与抛物线方程联立,求出以及的值,然后通过抛物线的定义将化简,最后得出结果【详解】因为直线交抛物线于不同的两点,所以直线的斜率存在,设过抛物线的焦点的直线方程为,由可得,,因为抛物线的准线方程为,所以根据抛物线的定义可知,,所以,综上所述,故选D【点睛】本题考查了抛物线的相关性质,主要考查了抛物线的定义、过抛物线焦点的直线与抛物线相交的相关性质,考查了计算能力,是中档题6、D【解析】根据椭圆的一个焦点是圆的圆心,求得c,再根据椭圆的短轴长为8求得b即可.【详解】圆的圆心是,所以椭圆的一个焦点是,即c=3,又椭圆的短轴长为8,即b=4,所以椭圆长半轴长为,所以椭圆的左顶点为,故选:D7、C【解析】直接由直线平面的定理得到选项正确;对于选项,m,n可能平行、相交或异面,所以该选项错误;对于选项,与内一直线l,所以,因为l为内一直线,所以.所以该选项正确.【详解】对于选项,若,,则,所以该选项正确;对于选项,若,,则,所以该选项正确;对于选项,若,,则m,n可能平行、相交或异面,所以该选项错误;对于选项,若,,则与内一直线l,所以,因为l为内一直线,所以.所以该选项正确.故选:C【点睛】本题主要考查空间直线平面位置关系判断,意在考查学生对这些知识的理解掌握水平.8、C【解析】先分别判断命题、的真假,再利用逻辑联结词“或”与“且”判断命题的真假.【详解】由题意,,所以,成立,即命题为真命题,,所以不存在,使得,即命题为假命题,所以是假命题,为真命题,所以是真命题,是假命题,是假命题,是真命题.故选:C9、B【解析】建立空间直角坐标系,利用空间向量坐标运算即可求解.【详解】如图所示建立适当空间直角坐标系,故选:B10、A【解析】每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=选A11、C【解析】取中间值,化成同底利用单调性比较可得.【详解】,,,故,故选:C12、B【解析】根据基本初等函数的导数公式及求导法则求导函数即可.【详解】.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由已知得圆的圆心为,所以当直线时,被该圆截得的线段最短,可求得直线的方程.【详解】解:由得,所以圆的圆心为,所以当直线时,被该圆截得的线段最短,所以,解得,所以直线l的方程为,即,故答案为:.14、10【解析】由等比数列的性质可得,再利用对数的性质可得结果【详解】解:因为等比数列的各项均为正数,且,所以,所以故答案为:1015、0【解析】计算每两个向量的数量积,判断该两个向量是否垂直,可得答案.【详解】因为,,.所以中任意两个向量都不垂直,即α,β,γ中任意两个平面都不垂直故答案为:0.16、②④##④②【解析】利用双曲线定义判断命题①;写出抛物线焦点判断命题②;分析点P满足的关系判断命题③;按取值讨论计算半焦距判断命题④作答.【详解】对于①,因双曲线定义中要求,则命题①不正确;对于②,抛物线化为:,其焦点坐标是,命题②正确;对于③,令定圆C的圆心为C,因,则点P是弦AB的中点,当P与C不重合时,有,点P在以线段AC为直径的圆上,当P与C重合时,点P也在以线段AC为直径的圆上,因此,动点P的轨迹是以线段AC为直径的圆(除A点外),则命题③不正确;对于④,曲线的焦点为,当时,椭圆中半焦距c满足:,其焦点为,当时,双曲线中半焦距满足:,其焦点为,因此曲线与曲线(且)有相同的焦点,命题④正确,所以真命题的序号为②④.故答案为:②④【点睛】易错点睛:椭圆长短半轴长分别为a,b,半焦距为c满足关系式:;双曲线的实半轴长、虚半轴长、半焦距分别为、、满足关系式:,在同一问题中出现认真区分,不要混淆.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由一元二次不等式的解法求得的范围;(2)由p是q的充分条件,转化为集合的包含关系,从而可求实数m的取值范围.【详解】(1)由p:为真,解得.(2)q:,若p是q的充分条件,则是的子集所以.即.18、(1)1600,(平方米);(2)池底设计为边长40米的正方形时总造价最低,最低造价为268800元.【解析】(1)根据题意,由于修建一个长方体无盖蓄水池,其容积为4800立方米,深度为3米可得底面积为1600,池壁面积s=.(2)同时池底每平方米的造价为150元,池壁每平方米的造价为120元设池底长方形长为x米,则可知总造价s=,x=40时,则.故可知当x=40时,则有可使得总造价最低,最低造价是268800元.考点:不等式求解最值点评:主要是考查了不等式求解最值的运用,属于基础题.19、(1)条件选择见解析,圆的方程为(2)的最小值为,相应【解析】(1)选择条件①或②或③,求得圆心和半径,由此求得圆的方程.(2)首先求得直线过定点,根据求得最短弦长以及此时的值.【小问1详解】若选条件①,由题意知,圆心是方程的解,解得,所以,设半径为,则.则圆的方程为:若选条件②,设圆心,由题意知,所以圆心,半径为,所以圆的方程为:若选条件③,设圆心,由题意知,即有,解得,圆心为,且半径为,所以圆的方程为:【小问2详解】由(1)圆的方程为:,圆心为,半径.直线过定点,要使弦长最短,,,,,直线的斜率,也即直线的斜率为,所以.,,所以弦长最小值为20、(1)证明见解析,;(2).【解析】(1)将给定等式变形,计算即可判断数列类型,再求出其通项而得解;(2)利用(1)的结论求出数列的通项,然后利用错位相减法求解即得.【详解】(1)因数列满足,,则,而,于是数列是首项为1,公比为2的等比数列,,即,所以数列是等比数列,,;(2)由(1)知,则于是得,,所以数列的前项和.21、(1)(2)或【解析】(1)根据已知条件求得,由此求得椭圆方程.(2)设出直线的方程,并与椭圆方程联立,求得点坐标,根据列方程,化简求得直线的斜率.【小问1详解】设椭圆的半焦距为,依题意,,又,可得,.所以,椭圆的方程为小问2详解】由题意,设.设直线的斜率为,又,则直线的方程为,与椭圆方程联立整理得,可得,代入得,进而直线的斜率.在中,令,得,所以直线的斜率为由,得,化简得,从而所以,直线的斜率为或22、(1)在和上单调递增;在上单调递减(2)证明见解析【解析】(1)先求导,然后对导数化简整理后再解不等式即可得单调性;(2)要证明,通过求函数的极值可证明,要证,根据有两个不同的零点,将问题转化为证明成立,再通过换元从求函数的最值上证明.【小问1详解】因为,所以,令,得或.所以时,或;时,.所以在和上单调递增;在上单调递
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年柴油销售网络建设合作协议4篇
- 2025奥菱达电梯有限企业电梯设备定期检查与维修服务协议2篇
- 二零二五年智能化分公司承包管理与收益分成协议3篇
- 事业单位专业技术人员2024聘用协议范本版
- 2025年私立学校教师国际交流与合作项目合同3篇
- 个人提成合同
- 个人经营性贷款合同(2024年修订版)
- 二零二五年度酒店健身房设备承包服务合同3篇
- 专属活动资助协议:2024权益细目版B版
- 二零二五年度环境卫生清扫保洁与照明设施维护合同3篇
- 横格纸A4打印模板
- CT设备维保服务售后服务方案
- 重症血液净化血管通路的建立与应用中国专家共识(2023版)
- 儿科课件:急性细菌性脑膜炎
- 柜类家具结构设计课件
- 陶瓷瓷砖企业(陶瓷厂)全套安全生产操作规程
- 煤炭运输安全保障措施提升运输安全保障措施
- JTGT-3833-2018-公路工程机械台班费用定额
- 保安巡逻线路图
- (完整版)聚乙烯课件
- 建筑垃圾资源化综合利用项目可行性实施方案
评论
0/150
提交评论