版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省志诚实验学校2025届数学高一上期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,则的值为A. B.C. D.2.已知向量,,则向量与的夹角为()A. B.C. D.3.命题:,的否定是()A., B.,C., D.,4.下列函数中,既是奇函数又在上有零点的是A. B.C D.5.下列各式中与相等的是A. B.C. D.6.函数的零点所在的区域为()A. B.C. D.7.用二分法求方程的近似解时,可以取的一个区间是()A. B.C. D.8.已知函数,若,则实数a的值为()A.1 B.-1C.2 D.-29.如图所示,在中,.若,,则()A. B.C. D.10.为了得到函数的图象,可以将函数的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,且函数恰有两个不同零点,则实数的取值范围是___________.12.对,不等式恒成立,则m的取值范围是___________;若在上有解,则m的取值范围是___________.13.已知函数在上单调递增,则实数a的取值范围为____.14.已知是内一点,,记的面积为,的面积为,则__________15.已知函数是定义在的偶函数,且当时,若函数有8个零点,分别记为,,,,,,,,则的取值范围是______.16.已知,g(x)=x+t,设,若当x为正整数时,恒有h(5)≤h(x),则实数t的取值范围是_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,(1)求的值;(2)求的值.18.已知为锐角,(1)求的值;(2)求的值19.化简求值:(1)已知,求的值;(2)20.已知(1)当时,解关于的不等式;(2)当时,解关于的不等式21.如图,已知,分别是正方体的棱,的中点.求证:平面平面.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由,故选C2、C【解析】结合平面向量线性运算的坐标表示求出,然后代入模长公式分别求出和,进而根据平面向量的夹角公式即可求出夹角的余弦值,进而求出结果.【详解】,,,,从而,且,记与的夹角为,则又,,故选:3、D【解析】由全称量词命题与存在量词命题的否定判断即可.【详解】由全称量词命题与存在量词命题的否定,可知原命题的否定为,故选:D4、D【解析】选项中的函数均为奇函数,其中函数与函数在上没有零点,所以选项不合题意,中函数为偶函数,不合题意;中函数的一个零点为,符合题意,故选D.5、A【解析】利用二倍角公式及平方关系可得,结合三角函数的符号即可得到结果.【详解】,又2弧度在第二象限,故sin2>0,cos2<0,∴=故选A【点睛】本题考查三角函数的化简问题,涉及到二倍角公式,平方关系,三角函数值的符号,考查计算能力.6、C【解析】根据函数解析式求得,根据函数的零点的判定定理求得函数的零点所在区间【详解】解:函数,定义域为,且为连续函数,,,,故函数的零点所在区间为,故选:【点睛】本题主要考查函数的零点的判定定理的应用,属于基础题7、B【解析】构造函数并判断其单调性,借助零点存在性定理即可得解.【详解】,令,在上单调递增,并且图象连续,,,在区间内有零点,所以可以取的一个区间是.故选:B8、B【解析】首先求出的解析式,再根据指数对数恒等式得到,即可得到方程,解得即可;【详解】解:根据题意,,则有,若,即,解可得,故选:B9、C【解析】根据.且,,利用平面向量的加法,减法和数乘运算求解.【详解】因为.且,,所以,,,.故选:C10、D【解析】,据此可知,为了得到函数的图象,可以将函数的图象向右平移个单位长度.本题选择D选项.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】作出函数的图象,把函数的零点转化为直线与函数图象交点问题解决.【详解】由得,即函数零点是直线与函数图象交点横坐标,当时,是增函数,函数值从1递增到2(1不能取),当时,是增函数,函数值为一切实数,在坐标平面内作出函数的图象,如图,观察图象知,当时,直线与函数图象有2个交点,即函数有2个零点,所以实数的取值范围是:.故答案为:12、①.②.【解析】(1)根据一元二次函数的图象,考虑开口方向和判别式,即可得到答案;(2)利用参变分离,将问题转化为不等式在上有解;【详解】(1)关于x的不等式函数对于任意实数x恒成立,则,解得m的取值范围是.(2)若在上有解,则在上有解,易知当时,当时,此时记,则,,在上单调递减,故,综上可知,,故m的取值范围是.故答案为:;13、【解析】由题意,利用复合函数的单调性,对数函数、二次函数的性质,求得的范围【详解】解:函数在上单调递增,函数在上单调递增,且,,解得,即,故答案:14、【解析】设BC中点为M,则,所以P到BC的距离为点A到BC距离的,故15、【解析】由偶函数的对称性,将转化为,再根据二次函数的对称性及对数函数的性质可进一步转化为,结合利用二次函数的性质即可求解.【详解】解:因为函数有8个零点,所以直线与函数图像交点有8个,如图所示:设,因为函数是定义在的偶函数,所以函数的图像关于轴对称,所以,且由二次函数对称性有,由有,所以又,所以,所以,故答案为:.16、[-5,-3]【解析】作出的图象,如图,设与的交点横坐标为,则在时,总有,所以当时,有,,由,得;当当时,有,,由,得,综上,,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)化简得到原式,代入数据得到答案.(2)变换得到,代入数据得到答案.【详解】(1).(2).【点睛】本题考查了利用齐次式计算函数值,变换是解题的关键.18、(1);(2).【解析】(1)根据题中条件,求出,,再由两角差的余弦公式,求出,根据二倍角公式,即可求出结果;(2)由(1)求出,,再由两角差的正切公式,即可求出结果.【详解】(1),为锐角,且,,则,,,,;(2)由(1),所以,则,又,,;.19、(1)(2)【解析】(1)先用诱导公式化简,再用同角三角函数的平方关系求解;(2)先用诱导公式化简,再代入特殊三角函数值计算即可.【小问1详解】;【小问2详解】20、(1)或;(2)答案不唯一,具体见解析.【解析】(1)先因式分解,进而解出的范围,进而结合指数函数的单调性求得答案;(2)设,然后因式分解,进而讨论a的取值范围求出t的范围,最后结合指数函数的单调性求得答案.【小问1详解】当时,若可得或,即解集为或【小问2详解】令,不等式转化为①当时,不等式解集为;②当时,不等式解集为或;③当时,不等式解集为;④当时,不等式解集为或.综上所述,当时,解集为;当时,解集为或;当时,解集为;当时,解集为或.21、见解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度红十字应急救护知识培训课件
- 2024年度甲方租赁乙方云计算资源用于数据处理的合同
- 2024年度装修工程安全文明施工合同
- 2024年度储罐用高性能焊接材料供应合同
- 《就业指导案例》课件
- 2024年度股权投资合同投资金额与用途
- 《复合材料板簧》课件
- 2024年度融资租赁合同标的租赁物、租金与还款协议
- 人教版小学语文二年级下册全册教
- 《胸腔穿刺术》课件
- 人教部编版六年级道德与法治上册第6课《人大代表为人民》精美课件
- 期末 (试题) -2024-2025学年外研版(三起)(2024)英语三年级上册
- 第五单元测试卷(单元测试)2024-2025学年统编版语文四年级上册
- 《金融科技概论(第二版)》高职全套教学课件
- 心衰健康宣教课件
- 药事管理学实践报告总结
- 2024年大学计算机基础考试题库附答案(完整版)
- 物理化学实验B智慧树知到课后章节答案2023年下北京科技大学
- 个人房屋租赁合同和押金房租收据(最新整理)
- 电力行业企业安全生产岗位责任清单
- HXD3C型机车停放制动装置原理与操作
评论
0/150
提交评论