2025届上海财大北郊高级中学高二数学第一学期期末联考模拟试题含解析_第1页
2025届上海财大北郊高级中学高二数学第一学期期末联考模拟试题含解析_第2页
2025届上海财大北郊高级中学高二数学第一学期期末联考模拟试题含解析_第3页
2025届上海财大北郊高级中学高二数学第一学期期末联考模拟试题含解析_第4页
2025届上海财大北郊高级中学高二数学第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届上海财大北郊高级中学高二数学第一学期期末联考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.双曲线的渐近线方程是()A. B.C. D.2.(2017新课标全国Ⅲ理科)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A. B.C. D.3.如图,在平行六面体中,为与的交点,若,,,则的值为()A. B.C. D.4.设函数若函数有两个零点,则实数m的取值范围是()A. B.C. D.5.已知f(x)是定义在R上的偶函数,当时,,且f(-1)=0,则不等式的解集是()A. B.C. D.6.已知方程表示的曲线是焦点在轴上的椭圆,则的取值范围A. B.C. D.7.设等差数列,的前n项和分别是,若,则()A. B.C. D.8.已知数列满足,且,则()A.2 B.3C.5 D.89.下列双曲线中,焦点在轴上且渐近线方程为的是A. B.C. D.10.已知、是椭圆和双曲线的公共焦点,是它们的一个公共点,且,椭圆的离心率为,双曲线的离心率为,则()A.2 B.3C.4 D.511.在正四面体中,棱长为2,且E是棱AB中点,则的值为A. B.1C. D.12.在某次赛车中,名参赛选手的成绩(单位:)全部介于到之间(包括和),将比赛成绩分为五组:第一组,第二组,···,第五组,其频率分布直方图如图所示.若成绩在内的选手可获奖,则这名选手中获奖的人数为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足,,则______.14.函数,其导函数为函数,则__________15.如果椭圆上一点P到焦点的距离等于6,则点P到另一个焦点的距离为____16.已知圆C,直线l:,若圆C上恰有四个点到直线l的距离都等于1.则b的取值范围为___.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设四边形为矩形,点为平面外一点,且平面,若,.(1)求与平面所成角的大小;(2)在边上是否存在一点,使得点到平面的距离为,若存在,求出的值,若不存在,请说明理由;(3)若点是的中点,在内确定一点,使的值最小,并求此时的值.18.(12分)如图,在四棱锥中,平面平面,,,是边长为的等边三角形,是以为斜边的等腰直角三角形,点为线段的中点.(1)证明:平面;(2)求直线与平面所成角的正弦值.19.(12分)已知函数.(I)若曲线在点处的切线方程为,求的值;(II)若,求的单调区间.20.(12分)已知等比数列中,,数列满足,(1)求数列的通项公式;(2)求证:数列为等差数列,并求前项和的最大值21.(12分)已知数列为等差数列,,数列满足,且(1)求的通项公式;(2)设,记数列的前项和为,求证:22.(10分)已知函数,数列的前n项和为,且对一切正整数n、点都在因数的图象上(1)求数列的通项公式;(2)令,数列的前n项和,求证:

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】先将双曲线的方程化为标准方程得,再根据双曲线渐近线方程求解即可.【详解】解:将双曲线的方程化为标准方程得,所以,所以其渐近线方程为:,即.故选:A.2、B【解析】绘制圆柱的轴截面如图所示,由题意可得:,结合勾股定理,底面半径,由圆柱的体积公式,可得圆柱的体积是,故选B.【名师点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.3、D【解析】将用基底表示,然后利用空间向量数量积的运算性质可求得结果.【详解】因为四边形为平行四边形,且,则为的中点,,则.故选:D4、D【解析】有两个零点等价于与的图象有两个交点,利用导数分析函数的单调性与最值,画出函数图象,数形结合可得结果.【详解】解:设,则,所以在上递减,在上递增,,且时,,有两个零点等价于与的图象有两个交点,画出的图象,如下图所示,由图可得,时,与的图象有两个交点,此时,函数有两个零点,实数m的取值范围是,故选:D.【点睛】方法点睛:本题主要考查分段函数的性质、利用导数研究函数的单调性、函数的零点,以及数形结合思想的应用,属于难题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质5、D【解析】根据题意可知,当时,,即函数在上单调递增,再结合函数f(x)的奇偶性得到函数的奇偶性,并根据奇偶性得到单调性,进而解得答案.【详解】由题意,当时,,则函数在上单调递增,而f(x)是定义在R上的偶函数,容易判断是定义在上的奇函数,于是在上单调递增,而f(-1)=0,则.于是当时,.故选:D.6、A【解析】根据条件,列出满足条件的不等式,求的取值范围.【详解】曲线表示交点在轴的椭圆,,解得:.故选A【点睛】本题考查根据椭圆的焦点位置求参数的取值范围,意在考查基本概念,属于基础题型.7、C【解析】结合等差数列前项和公式求得正确答案.【详解】依题意等差数列,的前n项和分别是,由于,故可设,,当时,,,所以,所以.故选:C8、D【解析】使用递推公式逐个求解,直到求出即可.【详解】因为所以,,,.故选:D9、C【解析】焦点在轴上的是C和D,渐近线方程为,故选C考点:1.双曲线的标准方程;2.双曲线的简单几何性质10、C【解析】依据椭圆和双曲线定义和题给条件列方程组,得到关于椭圆的离心率和双曲线的离心率的关系式,即可求得的值.【详解】设椭圆的长轴长为,双曲线的实轴长为,令,不妨设则,解之得代入,可得整理得,即,也就是故选:C11、A【解析】根据题意,由正四面体的性质可得:,可得,由E是棱中点,可得,代入,利用数量积运算性质即可得出.【详解】如图所示由正四面体的性质可得:可得:是棱中点故选:【点睛】本题考查空间向量的线性运算,考查立体几何中的垂直关系,考查转化与化归思想,属于中等题型.12、A【解析】先根据频率分布直方图确定成绩在内的频率,进而可求出结果.【详解】由题意可得:成绩在内的频率为,又本次赛车中,共名参赛选手,所以,这名选手中获奖的人数为.故选A【点睛】本题主要考查频率分布直方图,会根据频率分布直方图求频率即可,属于常考题型.二、填空题:本题共4小题,每小题5分,共20分。13、1023【解析】由数列递推公式求特定项,依次求下去即可解决.【详解】数列中,则,,,,,,故答案为:102314、【解析】根据解析式,可求得解析式,代入数据,即可得答案.详解】∵,∴,∴.故答案为:.15、14【解析】根据椭圆的定义及椭圆上一点P到焦点的距离等于6,可得的长.【详解】解:根据椭圆的定义,又椭圆上一点P到焦点的距离等于6,,故,故答案:.【点睛】本题主要考查椭圆的定义及简单性质,相对简单.16、【解析】根据圆的几何性质,结合点到直线距离公式进行求解即可.【详解】圆C:的半径为3,圆心坐标为:设圆心到直线l:的距离为,要想圆C上恰有四个点到直线l的距离都等于1,只需,即,所以.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)存在,距离为(3)位置答案见解析,【解析】(1)利用线面垂直的判定定理证明平面,然后由线面角的定义得到PC与平面PAD所成的角为,在中,由边角关系求解即可.(2)假设BC边上存在一点G满足题设条件,不放设,则,再根据得,进而得答案.(3)延长CB到C',使得C'B=CB,连结C'E,过E作于E',利用三点共线,两线段和最小,得到,过H作于H',连结HB,在中,求解HB即可.【小问1详解】解:因为平面,平面,所以,又因为底面是矩形,所以,又平面,所以平面,故与平面所成的角为,因为,,所以故直线PC与平面PAD所成角的大小为;【小问2详解】解:假设BC边上存在一点G满足题设条件,不妨设,则因为平面,到平面的距离为所以,即因为代入数据解得,即,故存在点G,当时,使得点D到平面PAG的距离为;【小问3详解】解:延长CB到C',使得C'B=CB,连结C'E,过E作于E',则,当且仅当三点共线时等号成立,故,过H作于H',连结HB,在中,,,所以.18、(1)证明见解析;(2).【解析】(1)取的中点,连接,,证明两两垂直,如图建系,求出的坐标以及平面的一个法向量,证明结合面,即可求证;(2)求出的坐标以及平面的法向量,根据空间向量夹角公式计算即可求解.【小问1详解】如图:取的中点,连接,,因为是边长为等边三角形,是以为斜边的等腰直角三角形,可得,,因为面面,面面,,面,所以平面,因为面,所以,可得两两垂直,分别以所在的直线为轴建立空间直角坐标系,则,,,,,,所以,,,设平面的一个法向量,由,可得,令,则,所以,因为,所以,因为面,所以平面.【小问2详解】,,,设平面的一个法向量,由,令,,,所以,设直线与平面所成角为,则.所以直线与平面所成角的正弦值为.19、(Ⅰ)(Ⅱ)在区间上单调递增,在区间上单调递减【解析】(Ⅰ)求出函数的导函数,根据题意可得得到关于的方程组,解得;(Ⅱ)求出函数的导函数,解得函数的单调递增区间,解得函数的单调递减区间.【详解】解:(Ⅰ)因为函数在点处的切线方程为解得(Ⅱ)令,得或.因为,所以时,;时,.故在区间上单调递增,在区间上单调递减【点睛】本题考查导数的几何意义,利用导数研究函数的单调性,属于基础题.20、(1);(2)证明见解析,10.【解析】(1)设出等比数列的公比q,利用给定条件列出方程求出q值即得;(2)将给定等式变形成,再推理计算即可作答.【详解】(1)设等比数列的公比为q,依题意,,而,解得,所以数列的通项公式为;(2)显然,,由得:,所以数列是以为首项,公差为-1的等差数列,其通项为,于是得,由得,而,则数列前4项都为非负数,从第5项起都是负数,又,因此数列前4项和与前3项和相等并且最大,其值为,所以数列前项和的最大值是10.21、(1);(2)证明见解析.【解析】(1)求出的值,可求得等差数列的公差,进而可求得数列的通项公式,再由前项和与通项的关系可求得的表达式,可求得,然后对是否满足在时的表达式进行检验,综合可得出数列的通项公式;(2)求得,利用裂项求和法

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论