2025届北京市西城区第一五六中学数学高一上期末统考试题含解析_第1页
2025届北京市西城区第一五六中学数学高一上期末统考试题含解析_第2页
2025届北京市西城区第一五六中学数学高一上期末统考试题含解析_第3页
2025届北京市西城区第一五六中学数学高一上期末统考试题含解析_第4页
2025届北京市西城区第一五六中学数学高一上期末统考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届北京市西城区第一五六中学数学高一上期末统考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,在下列四个正方体中,、为正方体两个顶点,、、为所在棱的中点,则在这四个正方体中,直线与平面不平行的是()A. B.C. D.2.下列命题中不正确的是()A.一组数据1,2,3,3,4,5的众数大于中位数B.数据6,5,4,3,3,3,2,2,2,1的分位数为5C.若甲组数据的方差为5,乙组数据为5,6,9,10,5,则这两组数据中较稳定的是乙D.为调查学生每天平均阅读时间,某中学从在校学生中,利用分层抽样的方法抽取初中生20人,高中生10人.经调查,这20名初中生每天平均阅读时间为60分钟,这10名高中生每天平均阅读时间为90分钟,那么被抽中的30名学生每天平均阅读时间为70分钟3.1弧度的圆心角所对的弧长为6,则这个圆心角所夹的扇形的面积是()A.3 B.6C.18 D.364.已知,则()A. B.C. D.5.设函数f(x)=asinx+bcosx,其中a,b∈R,ab≠0,若f(x)≥f()对一切x∈R恒成立,则下列结论中正确的是()A.B.点是函数的一个对称中心C.在上是增函数D.存在直线经过点且与函数的图象有无数多个交点6.已知函数:①y=2x;②y=log2x;③y=x-1;④y=;则下列函数图像(第一象限部分)从左到右依次与函数序号的对应顺序是()A.②①③④ B.②③①④C.④①③② D.④③①②7.函数的部分图象如图所示,则的值分别是()A. B.C. D.8.函数对于定义域内任意,下述四个结论中,①②③④其中正确的个数是()A.4 B.3C.2 D.19.若一元二次不等式的解集为,则的值为()A. B.0C. D.210.若sin(),α是第三象限角,则sin()=()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.袋子中有大小和质地完全相同的4个球,其中2个红球,2个白球,不放回地从中依次随机摸出2球,则2球颜色相同的概率等于________12.已知函数,关于方程有四个不同的实数解,则的取值范围为__________13.已知的定义域为,那么a的取值范围为_________14.已知直三棱柱的6个顶点都在球O的球面上,若,则球O的半径为________15.扇形半径为,圆心角为60°,则扇形的弧长是____________16.2021年10月16日0时23分,搭载神舟十三号载人飞船的长征二号F遥十三运载火箭,在酒泉卫星发射中心点火升空.约582秒后,载人飞船与火箭成功分离,进入预定轨道,发射取得圆满成功.此次航天飞行任务中,火箭起到了非常重要的作用.火箭质量是箭体质量与燃料质量的和,在不考虑空气阻力的条件下,燃料质量不同的火箭的最大速度之差与火箭质量的自然对数之差成正比.已知某火箭的箭体质量为mkg,当燃料质量为mkg时,该火箭的最大速度为2ln2km/s,当燃料质量为时,该火箭最大速度为2km/s.若该火箭最大速度达到第一宇宙速度7.9km/s,则燃料质量是箭体质量的_______________倍.(参考数据:)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在三棱锥P﹣ABC中,PA⊥平面ABC,CA=CB,点D,E分别为AB,AC的中点.求证:(1)DE∥平面PBC;(2)CD⊥平面PAB18.设集合,.(1)若,求;(2)若,求实数的取值集合.19.某兴趣小组在研究性学习活动中,通过对某商店一种商品销售情况的调查发现:该商品在过去的一个月内(以天计)的日销售价格(元)与时间(天)的函数关系近似满足(为常数).该商品的日销售量(个)与时间(天)部分数据如下表所示:(天)(个)已知第天该商品日销售收入为元.(1)求出该函数和的解析式;(2)求该商品的日销售收入(元)的最小值.20.某农户利用墙角线互相垂直的两面墙,将一块可折叠的长为am的篱笆墙围成一个鸡圈,篱笆的两个端点A,B分别在这两墙角线上,现有三种方案:方案甲:如图1,围成区域为三角形;方案乙:如图2,围成区域为矩形;方案丙:如图3,围成区域为梯形,且.(1)在方案乙、丙中,设,分别用x表示围成区域的面积,;(2)为使围成鸡圈面积最大,该农户应该选择哪一种方案,并说明理由.21.已知函数,实数且(1)设,判断函数在上的单调性,并说明理由;(2)设且时,的定义域和值域都是,求的最大值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】利用线面平行判定定理可判断A、B、C选项的正误;利用线面平行的性质定理可判断D选项的正误.【详解】对于A选项,如下图所示,连接,在正方体中,且,所以,四边形为平行四边形,则,、分别为、的中点,则,,平面,平面,平面;对于B选项,连接,如下图所示:在正方体中,且,所以,四边形为平行四边形,则,、分别为、的中点,则,,平面,平面,平面;对于C选项,连接,如下图所示:在正方体中,且,所以,四边形为平行四边形,则,、分别为、中点,则,,平面,平面,平面;对于D选项,如下图所示,连接交于点,连接,连接交于点,若平面,平面,平面平面,则,则,由于四边形为正方形,对角线交于点,则为的中点,、分别为、的中点,则,且,则,,则,又,则,所以,与平面不平行;故选:D.【点睛】判断或证明线面平行的常用方法:(1)利用线面平行的定义,一般用反证法;(2)利用线面平行的判定定理(,,),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;(3)利用面面平行的性质定理(,).2、A【解析】由中位数以及众数判断A;由百分位数的定义计算判断B;计算乙组数据的方差判断C;计算被抽中的30名学生每天平均阅读时间从而判断D.【详解】对于A,中位数为和众数相等,故A错误;对于B,将该组数据从小到大排列为,,则该组数据的分位数为5,故B正确;对于C,乙组数据,方差为,则这两组数据中较稳定的是乙,故C正确;对于D,被抽中的30名学生每天平均阅读时间为,故D正确;故选:A3、C【解析】由弧长的定义,可求得扇形的半径,再由扇形的面积公式,即可求解.【详解】由1弧度的圆心角所对的弧长为6,利用弧长公式,可得,即,所以扇形的面积为.故选C.【点睛】本题主要考查了扇形的弧长公式和扇形的面积公式的应用,着重考查了计算能力,属于基础题.4、D【解析】先求出,再分子分母同除以余弦的平方,得到关于正切的关系式,代入求值.【详解】由得,,所以故选:D5、D【解析】根据f(x)≥f()对一切x∈R恒成立,那么x=取得最小值.结合周期判断各选项即可【详解】函数f(x)=asinx+bcosx=周期T=2π由题意x=取得最小值,a,b∈R,ab≠0,∴f()=0不正确;x=取得最小值,那么+=就是相邻的对称中心,∴点(,0)不是函数f(x)的一个对称中心;因为x=取得最小值,根据正弦函数的性质可知,f(x)在是减函数故选D【点睛】本题考查三角函数的性质应用,排除法求解,考查转化思想以及计算能力6、D【解析】图一与幂函数图像相对应,所以应④;图二与反比例函数相对应,所以应为③;图三与指数函数相对应,所以应为①;图四与对数函数图像相对应,所以应为②所以对应顺序为④③①②,故选D7、A【解析】根据的图象求得,求得,再根据,求得,求得的值,即可求解.【详解】根据函数的图象,可得,可得,所以,又由,可得,即,解得,因为,所以.故选:A.8、B【解析】利用指数的运算性质及指数函数的单调性依次判读4个序号即可.【详解】,①正确;,,②错误;,由,且得,故,③正确;由为减函数,可得,④正确.故选:B.9、C【解析】由不等式与方程的关系转化为,从而解得【详解】解:∵不等式kx2﹣2x+k<0的解集为{x|x≠m},∴,解得,k=﹣1,m=﹣1,故m+k=﹣2,故选:C10、C【解析】由α是第三象限角,且sin(),可得为第二象限角,即可得,然后结合,利用两角和的正弦公式展开运算即可.【详解】解:因为α是第三象限角,则,又sin(),所以,即为第二象限角,则,则,故选:C.【点睛】本题考查了角的拼凑,重点考查了两角和的正弦公式,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】把4个球编号,用列举法写出所有基本事件,并得出2球颜色相同的事件,计数后可计算概率【详解】2个红球编号为,2个白球编号为,则依次取2球的基本事件有:共6个,其中2球颜色相同的事件有共2个,所求概率为故答案为:12、【解析】作出的图象如下:结合图像可知,,故令得:或,令得:,且等号取不到,故,故填.点睛:一般讨论函数零点个数问题,都要转化为方程根的个数问题或两个函数图像交点的个数问题,本题由于涉及函数为初等函数,可以考虑函数图像来解决,转化为过定点的直线与抛物线变形图形的交点问题,对函数图像处理能力要求较高.13、【解析】根据题意可知,的解集为,由即可求出【详解】依题可知,的解集为,所以,解得故答案为:14、【解析】根据直角三角形的外接圆的直径是直角三角形的斜边,结合球的对称性、勾股定理、直三棱柱的几何性质进行求解即可.【详解】因为,所以三角形是以为斜边的直角三角形,因此三角形的外接圆的直径为,圆心为.因为,所以,在直三棱柱中,侧面是矩形且它的中心即为球心O,球的直径是的长,则,所以球的半径为故答案为:【点睛】本题考查了直三棱柱外接球问题,考查了直观想象能力和数学运算能力.15、【解析】根据弧长公式直接计算即可.【详解】解:扇形半径为,圆心角为60°,所以,圆心角对应弧度为.所以扇形的弧长为.故答案为:16、51【解析】设燃料质量不同的火箭的最大速度之差与火箭质量的自然对数之差成正比的比例系数为k,根据条件列方程求出k值,再设当该火箭最大速度达到第--宇宙速度7.9km/s时,燃料质量是箭体质量的a倍,根据题中数据再列方程可得a值.【详解】设燃料质量不同的火箭的最大速度之差与火箭质量的自然对数之差成正比的比例系数为k,则,解得,设当该火箭最大速度达到第一宇宙速度7.9km/s时,燃料质量是箭体质量的a倍,则,得,则燃料质量是箭体质量的51倍故答案为:51.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析.【解析】(1)由点D、E分别为AB、AC中点得知DE∥BC,由此证得DE∥平面PBC;(2)要证CD⊥平面PAB,只需证明垂直平面内的两条相交直线与即可.【详解】(1)因为点D、E分别为AB、AC中点,所以DE∥BC又因为DE⊄平面PBC,BC⊂平面PBC,所以DE∥平面PBC(2)因为CA=CB,点D为AB中点,所以CD⊥AB因为PA⊥平面ABC,CD⊂平面ABC,所以PA⊥CD又因为PA∩AB=A,所以CD⊥平面PAB【点睛】本题考查线面平行的证明,线面垂直的证明,属于基础题.垂直、平行关系证明中应用转化与化归思想的常见类型(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.18、(1);(2).【解析】易得.(1)由;(2),然后利用分类讨论思想对、和分三种情况进行讨论.试题解析:集合(1)若,则,则(2),∴,当,即时,成立;当,即时,(i)当时,,要使得,,只要解得,所以的值不存在;(ii)当时,,要使得,只要解得综上,的取值集合是考点:集合的基本运算.19、(1),(2)最小值为元【解析】(1)利用可求得的值,利用表格中的数据可得出关于、的方程组,可解得、的值,由此可得出函数和的解析式;(2)求出函数的解析式,利用基本不等式、函数单调性求得在且、且的最小值,比较大小后可得出结论.【小问1详解】解:依题意知第天该商品的日销售收入为,解得,所以,.由表格可知,解得.所以,.【小问2详解】解:由(1)知,当且时,,当且时,.,当时,由基本不等式可得,当且仅当时,等号成立,即.当时,因为函数、均为减函数,则函数为减函数,所以当时,取得最小值,且.综上所述,当时,取得最小值,且.故该商品的日销售收入的最小值为元.20、(1),;,.(2)农户应该选择方案三,理由见解析.【解析】(1)根据矩形面积与梯形的面积公式表示即可得答案;(2)先根据基本不等式研究方案甲得面积的最大值为,再根据二次函数的性质结合(1)研究,的最大值即可得答案.【小问1详解】解:对于方案乙,当时,,所以矩形的面积,;对于方案丙,当时,,由于所以,所以梯形面积为,.【小问2详解】解:对于方案甲,设,则,所以三角形的面积为,当且仅当时等号成立,故方案甲的鸡圈面积最大值为.对于方案乙,由(1)得,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论