版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省滁州市来安中学2025届高二上数学期末预测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列问题中是古典概型的是A.种下一粒杨树种子,求其能长成大树的概率B.掷一颗质地不均匀的骰子,求出现1点的概率C.在区间[1,4]上任取一数,求这个数大于1.5概率D.同时掷两枚质地均匀的骰子,求向上的点数之和是5的概率2.圆的圆心和半径分别是()A. B.C. D.3.已知等比数列中,,,则首项()A. B.C. D.04.己知命题;命题,则下列命题中为假命题的是()A. B.C. D.5.为比较甲、乙两地某月时的气温状况,随机选取该月中的天,将这天中时的气温数据(单位:℃)制成如图所示的茎叶图(十位数字为茎,个位数字为叶).考虑以下结论:①甲地该月时的平均气温低于乙地该月时的平均气温;②甲地该月时的平均气温高于乙地该月时的平均气温;③甲地该月时的气温的标准差小于乙地该月时的气温的标准差;④甲地该月时的气温的标准差大于乙地该月时的气温的标准差.其中根据茎叶图能得到的统计结论的编号为()A.①③ B.①④C.②③ D.②④6.已知圆,圆C2:x2+y2-x-4y+7=0,则“a=1”是“两圆内切”的()A.充分必要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件7.小王与小张二人参加某射击比赛预赛的五次测试成绩如下表所示,设小王与小张成绩的样本平均数分别为和,方差分别为和,则()第一次第二次第三次第四次第五次小王得分(环)910579小张得分(环)67557A. B.C. D.8.设等差数列的前n项和为,且,则()A.64 B.72C.80 D.1449.在数列中,,则()A.2 B.C. D.10.一质点从出发,做匀速直线运动,每秒的速度为秒后质点所处的位置为()A. B.C. D.11.“杨辉三角”是中国古代数学文化的瑰宝之一,最早在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现.如图所示的杨辉三角中,第8行,第3个数是()第0行1第1行11第2行121第3行1331第4行14641……A.21 B.28C.36 D.5612.已知椭圆的离心率为,左、右焦点分别为、,过作轴的平行线交椭圆于、两点,为坐标原点,双曲线的虚轴长为,且以、为顶点,以直线、为渐近线,则椭圆的短轴长为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数的导函数为,,,则的解集为___________.14.在等差数列中,,那么等于______.15.在下列所示电路图中,下列说法正确的是____(填序号)(1)如图①所示,开关A闭合是灯泡B亮的充分不必要条件;(2)如图②所示,开关A闭合是灯泡B亮的必要不充分条件;(3)如图③所示,开关A闭合是灯泡B亮的充要条件;(4)如图④所示,开关A闭合是灯泡B亮的必要不充分条件16.已知O为坐标原点,抛物线C:的焦点为F,P为C上一点,PF与x轴垂直,Q为x轴上一点,且,若,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列满足,(1)求的通项公式;(2)若等比数列的前n项和为,且,,,求满足的n的最大值18.(12分)求证:(1)是上的偶函数;(2)是上的奇函数.19.(12分)已知椭圆F:经过点且离心率为,直线和是分别过椭圆F的左、右焦点的两条动直线,它们与椭圆分别相交于点A、B和C、D,O为坐标原点,直线AB和直线CD相交于M.记直线的斜率分别为,且(1)求椭圆F的标准方程(2)是否存在定点P,Q,使得为定值.若存在,请求出P、Q的坐标,若不存在,请说明理由20.(12分)一个小岛的周围有环岛暗礁,暗礁分布在以小岛中心为圆心,半径为的圆形区域内(圆形区域的边界上无暗礁),已知小岛中心位于轮船正西处,港口位于小岛中心正北处.(1)若,轮船直线返港,没有触礁危险,求的取值范围?(2)若轮船直线返港,且必须经过小岛中心东北方向处补水,求的最小值.21.(12分)已知两圆x2+y2-2x-6y-1=0.x2+y2-10x-12y+m=0(1)m取何值时两圆外切?(2)m取何值时两圆内切?(3)当m=45时,求两圆公共弦所在直线的方程和公共弦的长22.(10分)如图,菱形的边长为4,,矩形的面积为8,且平面平面(1)证明:;(2)求C到平面的距离.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】A、B两项中的基本事件的发生不是等可能的;C项中基本事件的个数是无限多个;D项中基本事件的发生是等可能的,且是有限个.故选D【考点】古典概型的判断2、B【解析】将圆的方程化成标准方程,即可求解.【详解】解:.故选:B.3、B【解析】设等比数列的公比为q,根据等比数列的通项公式,列出方程组,即可求得,进而可求得答案.【详解】设等比数列公比为q,则,解得,所以.故选:B4、A【解析】根据或且非命题的真假进行判断即可.【详解】当,故命题是真命题,,故命题是真命题.因此可知是假命题,是真命题,,均为真命题.故选:A5、B【解析】根据茎叶图数据求出平均数及标准差即可【详解】由茎叶图知甲地该月时的平均气温为,标准差为由茎叶图知乙地该月时的平均气温为,标准差为则甲地该月14时的平均气温低于乙地该月14时的平均气温,故①正确,乙平均气温的标准差小于甲的标准差,故④正确,故正确的是①④,故选:B6、B【解析】先得出圆的圆心和半径,求出两圆心间的距离,半径之差,根据两圆内切得出方程,从而得出答案.【详解】圆的圆心半径的圆心半径两圆心之间的距离为两圆的半径之差为当两圆内切时,,解得或所以当,可得两圆内切,当两圆内切时,不能得出(可能)故“”是“两圆内切”的充分不必要条件故选:B7、C【解析】根据图表数据可以看出小王和小张的平均成绩和成绩波动情况.【详解】解:从图表中可以看出小王每次的成绩均不低于小张,但是小王成绩波动比较大,故设小王与小张成绩的样本平均数分别为和,方差分别为和.可知故选:C8、B【解析】利用等差数列下标和性质,求得,再用等差数列前项和公式即可求解.【详解】根据等差数列的下标和性质,,解得,.故选:B.9、D【解析】根据递推关系,代入数据,逐步计算,即可得答案.【详解】由题意得,令,可得,令,可得,令,可得,令,可得.故选:D10、A【解析】利用空间向量的线性运算即可求解.【详解】2秒后质点所处的位置为.故选:A【点睛】本题考查了空间向量的线性运算,考查了基本知识掌握的情况以及学生的综合素养,属于基础题.11、B【解析】由题意知第8行的数就是二项式的展开式中各项的二项式系数,可得第8行,第3个数是为,即可求解【详解】解:由题意知第8行的数就是二项式的展开式中各项的二项式系数,故第8行,第3个数是为故选:B12、C【解析】不妨取点在第一象限,根据椭圆与双曲线的几何性质,以及它们之间的联系,可得点的坐标,再将其代入椭圆的方程中,解之即可【详解】解:由题意知,在椭圆中,有,在双曲线中,有,,即,双曲线的渐近线方程为,不妨取点在第一象限,则的坐标为,即,将其代入椭圆的方程中,有,,解得,椭圆的短轴长为故选:二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据,构造函数,利用其单调性求解.【详解】因为,所以,令,则,,所以是减函数,又,即,,所以,所以,则的解集为故答案为:14、14【解析】根据等差数列的性质得到,求得,再由,即可求解.【详解】因为数列为等差数列,且,根据等差数列的性质,可得,解答,又由.故答案为:14.15、(1)(2)(3)【解析】充分不必要条件是该条件成立时,可推出结果,但结果不一定需要该条件成立;必要条件是有结果必须有这一条件,但是有这一条件还不够;充要条件是条件和结果可以互推;条件和结果没有互推关系的是既不充分也不必要条件【详解】(1)开关闭合,灯泡亮;而灯泡亮时,开关不一定闭合,所以开关闭合是灯泡亮的充分不必要条件,选项(1)正确.(2)开关闭合,灯泡不一定亮;而灯泡亮时,开关必须闭合,所以开关闭合是灯泡亮的必要不充分条件,选项(2)正确.(3)开关闭合,灯泡亮;而灯泡亮时,开关必须闭合,所以开关闭合是灯泡亮的充要条件,选项(3)正确.(4)开关闭合,灯泡不一定亮;而灯泡亮时,开关不一定闭合,所以开关闭合是灯泡亮的既不充分也不必要条件,选项(4)错误.故答案为(1)(2)(3).16、3【解析】先求点坐标,再由已知得Q点坐标,由列方程得解.【详解】抛物线:()的焦点,∵P为上一点,与轴垂直,所以P的横坐标为,代入抛物线方程求得P的纵坐标为,不妨设,因为Q为轴上一点,且,所以Q在F的右侧,又,,,因为,所以,,所以3故答案为:3.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)10【解析】(1)设等差数列公差为d,根据已知条件列关于和d的方程组即可求解;(2)设等比数列公比为q,根据已知条件求出和q,根据等比数列求和公式即可求出,再解关于n的不等式即可.【小问1详解】由题意得,解得,∴【小问2详解】∵,,又,∴,公比,∴,令,得,令,所以n的最大值为1018、(1)证明见详解(2)证明见详解【解析】利用函数奇偶性的定义证明即可【小问1详解】由题意函数定义域为且故是上的偶函数【小问2详解】由题意函数定义域为且故是上奇函数19、(1);(2)存在点,使得为定值.【解析】(1)设,,,结合条件即求;(2)由题可设直线方程,利用韦达定理法可得,再结合条件可得点的轨迹方程为,然后利用椭圆的定义即得结论.【小问1详解】设,,,椭圆方程为:,椭圆过点,,解得t=1,所以椭圆F的方程是【小问2详解】由题可得焦点的坐标分别为,当直线AB或CD的斜率不存在时,点M的坐标为或,当直线AB和CD的斜率都存在时,设斜率分别为,点,直线AB为,联立,得则,,同理可得,,因为,所以,化简得由题意,知,所以设点,则,所以,化简得,当直线或的斜率不存在时,点M的坐标为或,也满足此方程所以点在椭圆上,根据椭圆定义可知,存在定点,使得为定值【点睛】关键点点睛:本题的关键是利用韦达定理法及题设条件求出点M的轨迹方程,再结合椭圆的定义,从而问题得到解决.20、(1)(2)120【解析】(1)建立平面直角坐标系设直线方程,根据点到直线的距离公式可得;(2)先求补水点的坐标,根据直线过该点,结合所求,根据基本不等式可得.【小问1详解】根据题意,以小岛中心为原点,建立平面直角坐标系,当时,则轮船返港的直线为,因为没有触礁危险,所以原点到的距离,解得.【小问2详解】根据题意可得,,点C在直线上,故点C,设轮船返港的直线是,则,所以.当且仅当时取到最小值.21、(1)(2)(3)直线方程为4x+3y-23=0,弦长为【解析】(1)先把两个圆的方程化为标准形式,求出圆心和半径,再根据两圆的圆心距等于两圆的半径之和,求得m的值;(2)由两圆的圆心距等于两圆的半径之差为,求得m的值.(3)当m=45时,把两个圆的方程相减,可得公共弦所在的直线方程.求出第一个圆的圆心(1,3)到公共弦所在的直线的距离d,再利用弦长公式求得弦长试题解析:(1)由已知可得两个圆的方程分别为(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=61-m,两圆的圆心距d==5,两圆的半径之和为+,由两圆的半径之和为+=5,可得m=(2)由两圆的圆心距d=="5"等于两圆的半径之差为|-|,即|-|=5,可得-="5"(舍去),或-=-5,解得m=(3)当m=45时,两圆的方程分别为(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=16,把两个圆的方程相减,可得公共弦所在的直线方程为4x+3y-23=0第一个圆的圆心(1,3)到公共弦所在的直线的距离为d==2,可得弦长为考点:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年宣城市绩溪县广播电视台引进紧缺人才历年管理单位笔试遴选500模拟题附带答案详解
- 2025年宜春市民族宗教事务局招考管理单位笔试遴选500模拟题附带答案详解
- 2025年宜昌市兴山县事业单位招考及管理单位笔试遴选500模拟题附带答案详解
- 2025年宜宾天立国际学校教师招考管理单位笔试遴选500模拟题附带答案详解
- 2025年安徽黄山市屯溪区面向村(社区)“两委”成员招聘事业单位人员4人历年管理单位笔试遴选500模拟题附带答案详解
- 2025-2030年中国丙烯腈商业计划书
- 2024-2030年铁锤公司技术改造及扩产项目可行性研究报告
- 2024-2030年组合层压膜公司技术改造及扩产项目可行性研究报告
- 2024-2030年撰写:中国连接器项目风险评估报告
- 2024-2030年撰写:中国制动阀行业发展趋势及竞争调研分析报告
- 河湖长制培训课件
- 2024年广东开放大学《汽车电器设备构造与检修》形成性考核参考试题库(含答案)
- 棋牌室加盟方案
- 煤气柜试运行总结
- 2024年山东省高中会考数学题学业水平考试(有答案)
- 论文修改与润色从初稿到终稿的完善过程
- 检验员年终总结汇报
- 人际沟通:协调职场关系提高工作效率
- 网络切片技术概述
- 2024年度医院各科室医务人员述职报告之皮肤科课件
- 2024烘焙课件全新
评论
0/150
提交评论