2025届内蒙古翁牛特旗乌丹一中高二上数学期末质量检测模拟试题含解析_第1页
2025届内蒙古翁牛特旗乌丹一中高二上数学期末质量检测模拟试题含解析_第2页
2025届内蒙古翁牛特旗乌丹一中高二上数学期末质量检测模拟试题含解析_第3页
2025届内蒙古翁牛特旗乌丹一中高二上数学期末质量检测模拟试题含解析_第4页
2025届内蒙古翁牛特旗乌丹一中高二上数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届内蒙古翁牛特旗乌丹一中高二上数学期末质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若指数函数(且)与三次函数的图象恰好有两个不同的交点,则实数的取值范围是()A. B.C. D.2.设,是两个不同的平面,是直线且.“”是“”的A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件3.已知圆:,圆:,则两圆的位置关系为()A.外离 B.外切C.相交 D.内切4.已知二次函数交轴于,两点,交轴于点.若圆过,,三点,则圆的方程是()A. B.C. D.5.已知直线与直线平行,则实数a的值为()A.1 B.C.1或 D.6.设双曲线的左、右顶点分别为、,左、右焦点分别为、,以为直径的圆与双曲线左支的一个交点为若以为直径的圆与直线相切,则的面积为()A. B.C. D.7.已知数列为等差数列,且成等比数列,则的前6项的和为A.15 B.C.6 D.38.若,,且,则()A. B.C. D.9.变量,之间有如下对应数据:3456713111087已知变量与呈线性相关关系,且回归方程为,则的值是()A.2.3 B.2.5C.17.1 D.17.310.甲、乙、丙、丁共4名同学进行党史知识比赛,决出第1名到第4名的名次(名次无重复),其中前2名将获得参加市级比赛的资格,甲和乙去询问成绩,回答者对甲说:“很遗憾,你没有获得参加市级比赛的资格.”对乙说:“你当然不会是最差的.”从这两个回答分析,4人的排名有()种不同情况.A.6 B.8C.10 D.1211.已知,条件,条件,则是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.甲、乙、丙、丁四人站成一列,要求甲站在最前面,则不同的排法有()A.24种 B.6种C.4种 D.12种二、填空题:本题共4小题,每小题5分,共20分。13.若点P为双曲线上任意一点,则P满足性质:点P到右焦点的距离与它到直线的距离之比为离心率e,若C的右支上存在点Q,使得Q到左焦点的距离等于它到直线的距离的6倍,则双曲线的离心率的取值范围是______14.双曲线上的一点到一个焦点的距离等于1,那么点到另一个焦点的距离为_________.15.已知函数,则________.16.已知几何体如图所示,其中四边形ABCD,CDGF,ADGE均为正方形,且边长为1,点M在DG上,若直线MB与平面BEF所成的角为45°,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列的前和为,数列是公比为2的等比数列,且,(1)求数列和数列的通项公式;(2)现由数列与按照下列方式构造成新的数列①将数列中的项去掉数列中的项,按原来的顺序构成新数列;②数列与中的所有项分别构成集合与,将集合中的所有元素从小到大依次排列构成一个新数列;在以上两个条件中任选一个做为已知条件,求数列的前30项和.18.(12分)在平面直角坐标系中,有一条长度为3的线段,端点,分别在轴、轴上运动,为线段上一点,且.(1)求点的轨迹的方程;(2)已知不过原点的直线与相交于,两点,且线段始终被直线平分.求的面积取最大时直线的方程.19.(12分)已知抛物线经过点.(Ⅰ)求抛物线C的方程及其焦点坐标;(Ⅱ)过抛物线C上一动点P作圆的两条切线,切点分别为A,B,求四边形面积的最小值.20.(12分)抛物线的焦点为F,过点F的直线交抛物线于A,B两点(1)若,求直线AB的斜率;(2)设点M在线段AB上运动,原点O关于点M的对称点为C,求四边形OACB面积的最小值21.(12分)在四棱锥中,平面,底面是边长为2的菱形,分别为的中点.(1)证明:平面;(2)求三棱锥的体积.22.(10分)设椭圆的左,右焦点分别为,其离心率为,且点在C上.(1)求C的方程;(2)O为坐标原点,P为C上任意一点.若M为的中点,过M且平行于的直线l交椭圆C于A,B两点,是否存在实数,使得?若存在,求值;若不存在,说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】分析可知直线与曲线在上的图象有两个交点,令可得出,令,问题转化为直线与曲线有两个交点,利用导数分析函数的单调性与极值,数形结合可得出实数的取值范围.【详解】当时,,,此时两个函数的图象无交点;当时,由得,可得,令,其中,则直线与曲线有两个交点,,当时,,此时函数单调递增,当时,,此时函数单调递减,则,且当时,,作出直线与曲线如下图所示:由图可知,当时,即当时,指数函数(且)与三次函数的图象恰好有两个不同的交点.故选:A.2、B【解析】,得不到,因为可能相交,只要和的交线平行即可得到;,,∴和没有公共点,∴,即能得到;∴“”是“”的必要不充分条件.故选B考点:必要条件、充分条件与充要条件的判断.【方法点晴】考查线面平行的定义,线面平行的判定定理,面面平行的定义,面面平行的判定定理,以及充分条件、必要条件,及必要不充分条件的概念,属于基础题;并得不到,根据面面平行的判定定理,只有内的两相交直线都平行于,而,并且,显然能得到,这样即可找出正确选项.3、C【解析】求出两圆的圆心和半径,根据圆心距与半径和与差的关系,判断圆与圆的位置关系【详解】圆:的圆心为,半径,圆:,即,圆心,半径,两圆的圆心距,显然,即,所以圆与圆相交.故选:C4、C【解析】由已知求得点A、B、C的坐标,则有AB的垂直平分线必过圆心,所以设圆的圆心为,由,可求得圆M的半径和圆心,由此求得圆的方程.【详解】解:由解得或,所以,又令,得,所以,因为圆过,,三点,所以AB的垂直平分线必过圆心,所以设圆的圆心为,所以,即,解得,所以圆心,半径,所以圆的方程是,即,故选:C5、A【解析】根据两直线平行的条件列方程,化简求得,检验后确定正确答案.【详解】由于直线与直线平行,所以,或,当时,两直线方程都为,即两直线重合,所以不符合题意.经检验可知符合题意.故选:A6、C【解析】据三角形中位线可得;再由双曲线的定义求出,进而求出的面积【详解】双曲线的方程为:,,设以为直径的圆与直线相切与点,则,且,,∥.又为的中点,,又,,的面积为:.故选:C7、C【解析】利用成等比数列,得到方程2a1+5d=2,将其整体代入{an}前6项的和公式中即可求出结果【详解】∵数列为等差数列,且成等比数列,∴,1,成等差数列,∴2,∴2=a1+a1+5d,解得2a1+5d=2,∴{an}前6项的和为2a1+5d)=故选C【点睛】本题考查等差数列前n项和求法,是基础题,解题时要认真审题,注意等差数列、等比数列的性质的合理运用8、A【解析】由于对数函数的存在,故需要对进行放缩,结合(需证明),可放缩为,利用等号成立可求出,进而得解.【详解】令,,故在上单调递减,在上单调递增,,故,即,当且仅当,等号成立.所以,当且仅当时,等号成立,又,所以,即,所以,又,所以,,故故选:A9、D【解析】将样本中心点代入回归方程后求解【详解】,,将样本中心点代入回归方程,得故选:D10、C【解析】由题可知甲不在前2名,乙不在最后一名,然后分类讨论可得答案.【详解】若甲是最后一名,则其他三人没有限制,4人排名即为,若甲是第三名,4人的排名为,所以4人的排名有种情况.故选:C11、A【解析】利用“1”的妙用探讨命题“若p则q”的真假,取特殊值计算说明“若q则p”的真假即可判断作答.【详解】因为,由得:,则,当且仅当,即时取等号,因此,,因,,由,取,则,,即,,所以是的充分不必要条件.故选:A12、B【解析】由已知可得只需对剩下3人全排即可【详解】解:甲、乙、丙、丁四人站成一列,要求甲站在最前面,则只需对剩下3人全排即可,则不同的排法共有,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】若Q到的距离为有,由题设有,结合双曲线离心率的性质,即可求离心率的范围.【详解】由题意,,即,整理有,所以或,若Q到的距离为,则Q到左、右焦点的距离分别为、,又Q在C的右支上,所以,则,又,综上,双曲线的离心率的取值范围是.故答案为:【点睛】关键点点睛:若Q到的距离为,根据给定性质有Q到左、右焦点的距离分别为、,再由双曲线性质及已知条件列不等式组求离心率范围.14、【解析】首先将已知的双曲线方程转化为标准方程,然后根据双曲线的定义知双曲线上的点到两个焦点的距离之差的绝对值为,即可求出点到另一个焦点的距离为17.考点:双曲线的定义.15、2【解析】根据导数的计算法则计算即可.【详解】∵,∴,∴∴.故答案为:2.16、##【解析】把该几何体补成一个正方体,如图,利用正方体的性质证明面面垂直得出直线MB与平面BEF所成的角,然后计算可得【详解】把该几何体补成一个正方体,如图,,连接,由平面,平面,得,同理,又正方形中,,,平面,所以平面,而平面,所以平面平面,所以平面内的直线在平面上的射影是,即是直线MB与平面BEF所成的角,,,,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)答案见解析【解析】(1)由题意可直接得到等比数列的通项公式;求出等差数列的公差,即可得到其通项公式;(2)若选①,则可确定由数列前33项的和减去,即可得答案;若选②,则可确定由数列前27项的和加上,即可得答案.【小问1详解】因为数列为等比数列,且,所以.又因,所以,又,则,故等差数列的通项公式为.【小问2详解】因为,,所以,而若选①因为在数列前30项内,不在在数列前30项内.,则数列前30项和为:=1632.若选②因为在数列前30项内,不在在数列前30项内.,则数列前30项和为:=1203.18、(1)(2)【解析】(1)设,根据题意可得,,利用两点之间的距离公式表示出,化简即可得出结果;(2)设,,线段的中点为,利用两点坐标表示直线斜率的公式和点差法求出直线的斜率,设的方程为,联立椭圆方程并消去y得到关于x的一元二次方程,根据韦达定理表示、进而得出弦长,利用点到直线的距离公式求出原点到的距离,结合基本不等式计算即可.【小问1详解】设,由为线段上一点,且,得,,又,则,整理可得,所以轨迹的方程为;【小问2详解】设,,线段的中点为.∵在直线上,∴,∵A,在轨迹上,∴两式相减,可得,∴,即直线的斜率为,依题意,可设直线的方程为,由可得,则解得且由韦达定理,得,∴∵原点到直线的距离为∴,当且仅当,即时等号成立,即时,三角形的面积最大,此时直线的方程为.19、(1),;(2).【解析】(1)将点代入抛物线方程求解出的值,则抛物线方程和焦点坐标可知;(2)设出点坐标,根据切线长相等以及切线垂直于半径将四边形的面积表示为,然后根据三角形面积公式将其表示为,根据点到点的距离公式表示出,然后结合二次函数的性质求解出四边形面积的最小值.【详解】(1)因为抛物线过点,所以,所以,所以抛物线的方程为:,焦点坐标为,即;(2)设,因为为圆的切线,所以,且,所以,又因为,所以,当时,四边形的面积有最小值且最小值为.【点睛】关键点点睛:解答本题的关键在于根据圆的切线的性质将四边形面积转化为三角形的面积,再通过三角形的面积公式将其转化为二次函数求最值的问题模型,对于转化的技巧要求较高.20、(1);(2)面积最小值是4【解析】本题主要考查抛物线的标准方程及其几何性质、直线与圆锥曲线的位置关系、直线的斜率等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,依题意F(1,0),设直线AB的方程为.将直线AB的方程与抛物线的方程联立,得,由此能够求出直线AB的斜率;第二问,由点C与原点O关于点M对称,得M是线段OC的中点,从而点O与点C到直线AB的距离相等,所以四边形OACB的面积等于,由此能求出四边形OACB的面积的最小值试题解析:(1)依题意知F(1,0),设直线AB方程为.将直线AB的方程与抛物线的方程联立,消去x得.设,,所以,.①因为,所以.②联立①和②,消去,得所以直线AB的斜率是(2)由点C与原点O关于点M对称,得M是线段OC中点,从而点O与点C到直线AB的距离相等,所以四边形OACB的面积等于因为,所以当m=0时,四边形OACB的面积最小,最小值是4考点:抛物线的标准方程及其几何性质、直线与圆锥曲线的位置关系、直线的斜率21、(1)证明见解析(2)【解析】(1)取的中点,利用三角形中位线定理可证明BG//EF,由线线平行,可得线面平行;(2根据图像可得,以为底面,证明为高,利用三棱锥的体积公式,可得答案;【小问1详解】取的中点,因为为的中点,所以且,又因为为的中点,四边形为菱形,所以且,所以且,故四边形BFEG为平行四边形,所以BG//EF,因为面面,所以面.【小问2详解】因为底面是边长为2的菱形,,则为正三角形,所以因为面,所以为三棱锥的高所以三棱锥的体积.22、(1);(2).【解析】(1)列出关于a、b、c

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论