




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
本溪市重点中学2025届数学高一上期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将一个直角三角形绕其一直角边所在直线旋转一周,所得的几何体为()A.一个圆台 B.两个圆锥C.一个圆柱 D.一个圆锥2.已知向量,,则与的夹角为A. B.C. D.3.的分数指数幂表示为()A. B.C. D.都不对4.在平行四边形中,,则()A. B.C.2 D.45.“”是“”的()A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件6.数学可以刻画现实世界中的和谐美,人体结构、建筑物、国旗、绘画、优选法等美的共性与黄金分割相关.黄金分割常数也可以表示成,则()A. B.C. D.7.已知幂函数的图像过点,则下列关于说法正确的是()A.奇函数 B.偶函数C.定义域为 D.在单调递减8.已知集合,,则集合()A. B.C. D.9.已知命题,;命题,.若,都是假命题,则实数的取值范围为()A. B.C.或 D.10.计算:()A.0 B.1C.2 D.3二、填空题:本大题共6小题,每小题5分,共30分。11.函数且的图象恒过定点__________.12.若是定义在R上的奇函数,当时,(为常数),则当时,_________.13.求值:______.14.已知函数的图象上关于轴对称的点恰有9对,则实数的取值范围_________.15.已知函数,现有如下几个命题:①该函数为偶函数;
②是该函数的一个单调递增区间;③该函数的最小正周期为;④该函数的图像关于点对称;⑤该函数的值域为.其中正确命题的编号为______16.将函数图象上所有点的横坐标压缩为原来的后,再将图象向左平移个单位长度,得到函数的图象,则的单调递增区间为____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)试判断函数的奇偶性;(2)求函数的值域.18.已知直线,.(1)若,求的值;(2)若,求的值.19.已知定义域为的函数是奇函数(1)求实数,的值;(2)判断的单调性,并用单调性的定义证明;(3)当时,恒成立,求实数的取值范围20.已知,且(1)求的值;(2)求的值21.已知函数是R上的奇函数.(1)求a的值,并判断的单调性;(2)若存在,使不等式成立,求实数b的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】依题意可知,这是一个圆锥.2、C【解析】利用夹角公式进行计算【详解】由条件可知,,,所以,故与的夹角为故选【点睛】本题考查了运用平面向量数量积运算求解向量夹角问题,熟记公式准确计算是关键,属于基础题3、B【解析】直接由根式化为分数指数幂即可【详解】解:故选:B【点睛】本题考查了根式与分数指数幂的互化,属基础题.4、B【解析】由条件根据两个向量的加减法的法则,以及其几何意义,可得,,然后转化求解即可【详解】可得,,两式平方相加可得故选:5、B【解析】利用充分条件,必要条件的定义即得.【详解】由可推出,由,即或,推不出,故“”是“”的充分不必要条件.故选:B.6、A【解析】利用同角三角函数平方关系,诱导公式,二倍角公式进行求解.【详解】故选:A7、D【解析】设出幂函数的解析式,将所过点坐标代入,即可求出该函数.再根据幂函数的性质的结论,选出正确选项.【详解】设幂函数为,因为函数过点,所以,则,所以,该函数定义域为,则其既不是奇函数也不是偶函数,且由可知,该幂函数在单调递减.故选:D.8、B【解析】解不等式求得集合、,由此求得.【详解】,,所以.故选:B9、B【解析】写出命题p,q的否定命题,由题意得否定命题为真命题,解不等式,即可得答案.【详解】因为命题p为假命题,则命题p的否定为真命题,即:为真命题,解得,同理命题q为假命题,则命题q的否定为真命题,即为真命题,所以,解得或,综上:,故选:B【点睛】本题考查命题的否定,存在量词命题与全程量词命题的否定关系,考查分析理解,推理判断的能力,属基础题.10、B【解析】根据指数对数恒等式及对数的运算法则计算可得;【详解】解:;故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】令真数为,求出的值,再代入函数解析式,即可得出函数的图象所过定点的坐标.【详解】令,得,且.函数的图象过定点.故答案为:.12、【解析】根据得到,再取时,,根据函数奇偶性得到表达式.【详解】是定义在R上的奇函数,则,故,时,,则.故答案为:.13、7【解析】利用指数式与对数式的互化,对数运算法则计算作答.【详解】.故答案为:714、【解析】求出函数关于轴对称的图像,利用数形结合可得到结论.【详解】若,则,,设为关于轴对称的图像,画出的图像,要使图像上有至少9个点关于轴对称,即与有至少9个交点,则,且满足,即则,解得,故答案为【点睛】解分段函数或两个函数对称性的题目时,可先将一个函数的对称图像求出,利用数形结合的方式得出参数的取值范围;遇到题目中指对函数时,需要讨论底数的范围,分别画出图像进行讨论.15、②③【解析】由于为非奇非偶函数,①错误.,此时,其在上为增函数,②正确.由于,所以函数最小正周期为,③正确.由于,故④正确.当时,,故⑤错误.综上所述,正确的编号为②③.16、【解析】根据函数图象的变换,求出的解析式,结合函数的单调性进行求解即可.【详解】由数图象上所有点的横坐标压缩为原来的后,得到,再将图象向左平移个单位长度,得到函数的图象,即令,函数的单调递增区间是由,得,的单调递增区间为.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)奇函数;(2).【解析】化简函数f(x)=log3(2-sinx)-log3(2+sinx)(1)利用函数的奇偶性的定义直接求解即可;(2)把分子分离常数,根据-1≤sinx≤1,求出函数的值域【详解】(1),的定义域为,则对中的任意都有,所以为上的奇函数;(2)令,,,
,,,
即值域为.【点睛】本题考查对数的运算性质,函数奇偶性的判断,对数函数的值域与最值,考查计算能力,属于中档题.18、(1);(2)【解析】(1)利用两条直线垂直的条件,结合两条直线的方程可得1×(m﹣2)+m×3=0,由此求得m的值(2)利用两直线平行的条件,结合两条直线的方程可得,由此求得得m的值【详解】(1)∵直线l1:x+my+6=0,l2:(m﹣2)x+3y+2m=0,由l1⊥l2,可得1×(m﹣2)+m×3=0,解得(2)由题意可知m不等于0,由l1∥l2可得,解得m=﹣1【点睛】本题主要考查两直线平行、垂直的条件,属于基础题19、(1),(2)在上单调递增,证明见解析(3)的取值范围为.【解析】(1)根据得到,根据计算得到,得到答案.(2)化简得到,,计算,得到是增函数.(3)化简得到,参数分离,求函数的最大值得到答案.【详解】(1)因为在定义域R上是奇函数.所以,即,所以.又由,即,所以,检验知,当,时,原函数是奇函数.(2)在上单调递增.证明:由(1)知,任取,则,因为函数在上是增函数,且,所以,又,所以,即,所以函数R上单调递增.(3)因为是奇函数,从而不等式等价于,因为在上是增函数,由上式推得,即对一切有恒成立,设,令,则有,,所以,所以,即的取值范围为.20、(1);(2)【解析】(1)将条件化为,然后,可得答案;(2)由第一问可得,然后,解出即可.【详解】(1)因为,且,所以故又因为,所以,即,所以所以(2)由(1)知,又因为,所以.因为,,所以,即,解得或因为,所以,所以21、(1),为上的增函数;(2).【解析】(1)由奇函数的定义即可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 10-03矩阵及其运算章节课件
- 幼儿园小班体育教案好玩的彩带
- 2024北京北师大实验中学高二10月月考数学试题及答案
- 2025年国际关系与外交学考试试题及答案
- 2025年公共卫生服务与健康教育考试试题及答案
- 秩序维护部半年工作总结
- 火灾动力学FD05a-爆炸常识
- 直肠癌中医护理
- 高考历史考前冲刺-心理调适 课件
- 2025年网络经济与在线商业模式考试题及答案
- 随州市城市规划管理技术规定
- 渣土运输安全责任书
- 《队列研究》课件
- 《雨后春笋》-完整版PPT
- 炮车专项方案
- 解读三级公立医院绩效考核课件
- 公司输煤皮带着火应急演练方案
- chinese-name-culture中国姓名文化课件
- 闽教版小学四年级英语下册期末总复习
- 全面质量管理TQM培训课件
- 35KV集电线路铁塔组立专项方案
评论
0/150
提交评论