




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年人教版数学八年级上册压轴题专题精选汇编专题01多边形的内角和考试时间:120分钟试卷满分:100分姓名:__________班级:__________考号:__________题号一二三总分得分评卷人得分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2019秋•巴州区期末)若一个多边形截去一个角后,变成十四边形,则原来的多边形的边数可能为()A.14或15 B.13或14 C.13或14或15 D.14或15或162.(2分)(2022春•井研县期末)如图,大建从A点出发沿直线前进8米到达B点后向左旋转的角度为α,再沿直线前进8米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了72米,则每次旋转的角度α为()A.30° B.40° C.45° D.60°3.(2分)(2022•沂水县二模)如图,在正六边形ABCDEF内作正方形BCGH,连接AH,则∠FAH等于()A.75° B.72° C.60° D.45°4.(2分)(2021秋•宁津县期末)如图,∠A+∠B+∠C+∠D+∠E+∠F=()A.180° B.240° C.360° D.540°5.(2分)(2021秋•新罗区期末)如图,把△ABC纸片沿DE折叠,当点C落在四边形ABDE的外部时,此时测得∠1=106°,∠C=35°,则∠2的度数为()A.35° B.36° C.37° D.38°6.(2分)(2021秋•聊城期末)如图,图①是四边形纸条ABCD,其中AB∥CD,E,F分别为AB、CD上的两个点,将纸条ABCD沿EF折叠得到图②,再将图②沿DF折叠得到图③,若在图③中,∠FEM=24°,则∠EFC为()A.48° B.72° C.108° D.132°7.(2分)(2021秋•黄石期末)将一长方形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是()A.360° B.540° C.720° D.730°8.(2分)(2021秋•安陆市校级月考)四边形ABCD两组对边AD,BC与AB,DC延长线分别交于点E,F,∠AEB,∠AFD的平分线交于点P,∠A=64°,∠BCD=136°,则下列结论中正确的是()①∠EPF=100°;②∠ADC+∠ABC=160°;③∠PEB+∠PFC+∠EPF=136°;④∠PEA+∠PFA=36°A.①②③ B.②③④ C.①③④ D.①②③④9.(2分)(2021秋•江夏区期中)如图,七边形ABCDEFG中,EF,BA的延长线相交于点P,若∠ABC,∠BCD,∠CDE,∠DEF的外角的度数和为230°,则∠P的度数为()A.40° B.45° C.50° D.55°10.(2分)(2021秋•南关区校级期中)在计算一个多边形的内角和时,由于粗心少算了1个内角,其和等于1180°,则少算的这个角的度数是()A.60° B.70° C.80° D.90°评卷人得分二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2021秋•河东区校级期末)如图,AD,CE是△ABC的两条高,它们相交于点P,已知∠BAC的度数为α,∠BCA的度数为β,则∠APC的度数是.12.(2分)(2022•遂宁)如图,正六边形ABCDEF的顶点A、F分别在正方形BMGH的边BH、GH上.若正方形BMGH的边长为6,则正六边形ABCDEF的边长为.13.(2分)(2022•灞桥区校级模拟)如图,将三角形纸片ABC沿DE折叠,当点A落在四边形BCED的外部点A′处时,测量得∠1=70°,∠2=140°,则∠A的度数为°.14.(2分)(2022春•沂南县期中)如图,图①是四边形纸条ABCD,其中AB∥CD,E,F分别为AB、CD上的两个点,将纸条ABCD沿EF折叠得到图②,再将图②沿DF折叠得到图③,若在图③中,∠FEM=24°,则∠EFC为.15.(2分)(2021秋•嘉鱼县期末)如图,∠1+∠2+∠3+∠4+∠5+∠6=度.16.(2分)(2021秋•德城区期末)如图,在四边形ABCD中,∠ABC=∠ADC=90°,∠ABD=68°,则∠CAD的度数是.17.(2分)(2022•岳池县模拟)如图,∠1,∠2,∠3是五边形ABCDE的3个外角,若∠A+∠B=240°,则∠1+∠2+∠3=.18.(2分)(2021秋•垦利区期末)如图所示,∠1+∠2+∠3+∠4+∠5+∠6=.19.(2分)(2022•顺义区二模)一个正多边形的内角和为720°,则这个正多边形的每一个外角等于.20.(2分)(2022春•茌平区期末)如图所示,分别以n边形顶角顶点为圆心,以2cm长为半径画圆,则圆中阴影部分面积之和为cm2.评卷人得分三.解答题(共7小题,满分50分)21.(6分)(2022春•思明区校级期中)如图1,在五边形ABCDE中,AE∥BC,∠A=∠C.(1)猜想AB与CD之间的位置关系,并说明理由;(2)如图2,延长DE至F,连接BE,若∠1=∠3,∠AEF=2∠2,∠AED=2∠C﹣140°,求∠C的度数.22.(6分)(2021春•永嘉县校级期中)如图1我们称之为“8字形”,请直接写出∠A,∠B,∠C,∠D之间的数量关系:;(2)如图2,∠1+∠2+∠3+∠4+∠5+∠6+∠7=度(3)如图3所示,已知∠1=∠2,∠3=∠4,猜想∠B,∠P,∠D之间的数量关系,并证明.23.(8分)(2022春•宜兴市校级月考)如图,四边形ABCD,BE、DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β.(1)如图1,若α+β=120°,求∠MBC+∠NDC的度数;(2)如图1,试说明:∠MBC+∠NDC的度数与α,β的数量关系.(3)如图1,若BE与DF相交于点G,∠BGD=30°,请写出α、β所满足的等量关系式;(4)如图2,若α=β,判断BE、DF的位置关系,并说明理由.24.(6分)(2022•南京模拟)把20根长度相等的木条分成三部分,分别用其中两部分木条首尾相连做成两个边数相等的多边形,再用剩下的一部分木条首尾相连做成一个多边形.(1)求这三个多边形的内角和;(2)如果前两个多边形的边数和大于后一个多边形的边数,求这三个多边形的边数.25.(8分)(2022春•无锡期中)阅读并解决下列问题:(1)如图①,△ABC中,∠A=60°,∠ABC、∠ACB的平分线交于点D,则∠BDC=.(2)如图②,五边形ABCDE中,AE∥BC,EF平分∠AED,CF平分∠BCD,若∠EDC=72°,求∠EFC的度数.26.(8分)(2022春•江都区期中)如图,将△ABC纸片沿DE折叠,使点A落在四边形BCDE内点A'的位置,(1)探索∠A与∠1+∠2之间的数量关系,并说明理由.(2)如果点A落在四边形BCDE外点A''的位置,∠A与∠1、∠2之间的数量关系有何变化,请说明理由.27.(8分)(2021秋•临江市期末)我们探究过三角形内角和等于180°,四边形内角和等于360°,请解决下面的问题:(1)如图1,∠A+∠B+∠C+∠D=180°,则∠AOB+∠COD=(直接写出结果);(2)连接AD、BC,若AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线;①如图2,如果∠AOB=110°,那么∠COD的度数为(直接写出结果);②如图3,若∠AOD=∠BOC,AB与CD平行吗?请写出理由.
2022-2023学年人教版数学八年级上册压轴题专题精选汇编专题01多边形的内角和考试时间:120分钟试卷满分:100分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2019秋•巴州区期末)若一个多边形截去一个角后,变成十四边形,则原来的多边形的边数可能为()A.14或15 B.13或14 C.13或14或15 D.14或15或16【思路引导】根据不同的截法,找出前后的多边形的边数之间的关系得出答案.【完整解答】解:如图,n边形,A1A2A3…An,若沿着直线A1A3截去一个角,所得到的多边形,比原来的多边形的边数少1,若沿着直线A1M截去一个角,所得到的多边形,与原来的多边形的边数相等,若沿着直线MN截去一个角,所得到的多边形,比原来的多边形的边数多1,因此将一个多边形截去一个角后,变成十四边形,则原来的多边形的边数为13或14或15,故选:C.2.(2分)(2022春•井研县期末)如图,大建从A点出发沿直线前进8米到达B点后向左旋转的角度为α,再沿直线前进8米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了72米,则每次旋转的角度α为()A.30° B.40° C.45° D.60°【思路引导】根据多边形的外角的定义解决此题.【完整解答】解:∵72÷8=9,∴360°÷9=40°.∴每次旋转的角度α=40°.故选:B.3.(2分)(2022•沂水县二模)如图,在正六边形ABCDEF内作正方形BCGH,连接AH,则∠FAH等于()A.75° B.72° C.60° D.45°【思路引导】根据多边形的内角和公式求出正六边形的一个内角是120°,进而求出∠ABH=30°,在等腰三角形ABH中求出∠HAB=∠AHB=75°,即可求出∠FAH=∠FAB﹣∠HAB的度数.【完整解答】解:∵六边形ABCDEF是正六边形,∴正六边形的一个内角=×(6﹣2)×180°=120°,∠ABC=∠FAB=120°,AB=BC,∵四边形BCGH是正方形,∴∠HBC=90°,BC=BH,∴AB=BH,∠ABH=30°,∴∠HAB=∠AHB=(180°﹣30°)÷2=75°,∴∠FAH=∠FAB﹣∠HAB=120°﹣75°=45°,故选:D.4.(2分)(2021秋•宁津县期末)如图,∠A+∠B+∠C+∠D+∠E+∠F=()A.180° B.240° C.360° D.540°【思路引导】根据多边形内角与外角、三角形内角和定理、三角形外角性质进行推理计算即可.【完整解答】解:如图,由三角形外角性质可知:∠1=∠F+∠B,∠2=∠A+∠E,∴在四边形ADCG中,由四边形内角和可知:∠D+∠C+∠2+∠1=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故选:C.5.(2分)(2021秋•新罗区期末)如图,把△ABC纸片沿DE折叠,当点C落在四边形ABDE的外部时,此时测得∠1=106°,∠C=35°,则∠2的度数为()A.35° B.36° C.37° D.38°【思路引导】根据折叠性质得出∠C′=∠C=35°,根据三角形外角性质得出∠DOC=∠1﹣∠C=71°,∠2=∠DOC﹣∠C′=71°﹣35°=36°.【完整解答】解:如图,设C′D与AC交于点O,∵∠C=35°,∴∠C′=∠C=35°,∵∠1=∠DOC+∠C,∠1=106°,∴∠DOC=∠1﹣∠C=106°﹣35°=71°,∵∠DOC=∠2+∠C′,∴∠2=∠DOC﹣∠C′=71°﹣35°=36°.故选:B.6.(2分)(2021秋•聊城期末)如图,图①是四边形纸条ABCD,其中AB∥CD,E,F分别为AB、CD上的两个点,将纸条ABCD沿EF折叠得到图②,再将图②沿DF折叠得到图③,若在图③中,∠FEM=24°,则∠EFC为()A.48° B.72° C.108° D.132°【思路引导】先由折叠得:∠BEF=∠FEM=24°,由平行线的性质得∠EFM=24°,如图③中,根据折叠和平行线的性质得,∠MFC=132°,根据角的差可得结论.【完整解答】解:如图②,由折叠得:∠B'EF=∠FEM=24°,∵AE∥DF,∴∠EFM=24°,∠BMF=∠DME=48°,∵BM∥CF,∴∠CFM+∠BMF=180°,∴∠CFM=180°﹣48°=132°,由折叠得:如图③,∠MFC=132°,∴∠EFC=∠MFC﹣∠EFM=132°﹣24°=108°,故选:C.7.(2分)(2021秋•黄石期末)将一长方形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是()A.360° B.540° C.720° D.730°【思路引导】根据多边形的内角和公式解决此题.【完整解答】解:设将一长方形纸片沿一条直线剪成两个多边形的边数分别为x、y.∴这两个多边形的内角和之和为180°(x﹣2)+180°(y﹣2)=180°(x+y﹣4).∴180°整除这两个多边形的内角和之和.∵360°=180°×2,540°=180×3,720°=180°×4,180°不整除730°,∴这两个多边形的内角和之和不可能是730°.故选:D.8.(2分)(2021秋•安陆市校级月考)四边形ABCD两组对边AD,BC与AB,DC延长线分别交于点E,F,∠AEB,∠AFD的平分线交于点P,∠A=64°,∠BCD=136°,则下列结论中正确的是()①∠EPF=100°;②∠ADC+∠ABC=160°;③∠PEB+∠PFC+∠EPF=136°;④∠PEA+∠PFA=36°A.①②③ B.②③④ C.①③④ D.①②③④【思路引导】根据四边形内角和证明结论②正确,再根据∠AEB=116°﹣∠ABC和∠AFD=116°﹣∠ADC结合结论②证明结论④正确,连接AP并延长至点G,根据外角和定理证明结论①正确,结论③也可以通过前面的证明得到.【完整解答】解:∵∠A=64°,∠BCD=136°,∴∠ADC+∠ABC=360°﹣∠A﹣∠BCD=160°,故②正确;∵∠AEB=180°﹣∠A﹣∠ABC=116°﹣∠ABC,∠AFD=180°﹣∠A﹣∠ADC=116°﹣∠ADC,∴∠AEB+∠AFD=116°﹣∠ABC+116°﹣∠ADC=232°﹣(∠ADC+∠ABC)=72°,∵EP平分∠AEB,FP平分∠AFD,∴,,∴,故④正确;同理:∠PEB+∠PFC=36°,如图,连接AP并延长至点G,∠EPF=∠EPG+∠FPG=∠EAP+∠AEP+∠FAP+∠AFP=∠EAF+∠AEP+∠AFP=64°+36°=100°,故①正确;∴∠PEB+∠PFC+∠EPF=36°+100°=136°,故③正确.故选:D.9.(2分)(2021秋•江夏区期中)如图,七边形ABCDEFG中,EF,BA的延长线相交于点P,若∠ABC,∠BCD,∠CDE,∠DEF的外角的度数和为230°,则∠P的度数为()A.40° B.45° C.50° D.55°【思路引导】如图,根据多边形的外角和等于360°,得∠5+∠6+∠7=360°﹣230°=130°.根据三角形外角的性质,得∠8=∠6+∠7,那么∠5+∠8=130°.根据三角形内角和定理,得∠P=180°﹣(∠5+∠8)=50°.【完整解答】解:如图.由题意得:∠1+∠2+∠3+∠4=230°.∴∠5+∠6+∠7=360°﹣230°=130°.∵∠8=∠6+∠7,∴∠5+∠8=130°.∴∠P=180°﹣(∠5+∠8)=180°﹣130°=50°.故选:C.10.(2分)(2021秋•南关区校级期中)在计算一个多边形的内角和时,由于粗心少算了1个内角,其和等于1180°,则少算的这个角的度数是()A.60° B.70° C.80° D.90°【思路引导】设这个多边形的边数为n(n为正整数且n≥3),根据题意得1180°<180°(n﹣2)<1180°+180°,从而求得多边形的边数n,进而解决此题.【完整解答】解:设这个多边形的边数为n(n为正整数且n≥3).由题意得:1180°<180°(n﹣2)<1180°+180°.∴1180°<180°(n﹣2)<1360°.∴.∴n=9.∴这个多边形的内角和为180°×(9﹣2)=1260°.∴少算的这个角的度数为1260°﹣1180°=80°.故选:C.二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2021秋•河东区校级期末)如图,AD,CE是△ABC的两条高,它们相交于点P,已知∠BAC的度数为α,∠BCA的度数为β,则∠APC的度数是α+β.【思路引导】利用三角形的内角和定理和三角形的外角性质解决问题即可.【完整解答】解:∠B=180°﹣∠BAC﹣∠ACB=180°﹣(α+β),∵AD⊥BC,CE⊥AB,∴∠AEC=∠ADB=90°,∴∠BAD=90°﹣[180°﹣(α+β)]=α+β﹣90°,∴∠APC=∠AEC+∠BAD=α+β故填α+β.12.(2分)(2022•遂宁)如图,正六边形ABCDEF的顶点A、F分别在正方形BMGH的边BH、GH上.若正方形BMGH的边长为6,则正六边形ABCDEF的边长为4.【思路引导】根据正多边形的性质和直角三角形中,30°角所对的边是斜边的一半可以求得AF的长.【完整解答】解:设AF=x,则AB=x,AH=6﹣x,∵六边形ABCDEF是正六边形,∴∠BAF=120°,∴∠HAF=60°,∵∠AHF=90°,∴∠AFH=30°,∴AF=2AH,∴x=2(6﹣x),解得x=4,∴AB=4,即正六边形ABCDEF的边长为4,故答案为:4.13.(2分)(2022•灞桥区校级模拟)如图,将三角形纸片ABC沿DE折叠,当点A落在四边形BCED的外部点A′处时,测量得∠1=70°,∠2=140°,则∠A的度数为30°.【思路引导】利用三角形的外角、内角和定理,计算即可.【完整解答】解:∵∠1=70°,∴∠ADA′=180°﹣∠1=110°,∵∠A+∠ADA′=∠2,∠2=140°,∴∠A=140°﹣110°=30°.故答案为:30.14.(2分)(2022春•沂南县期中)如图,图①是四边形纸条ABCD,其中AB∥CD,E,F分别为AB、CD上的两个点,将纸条ABCD沿EF折叠得到图②,再将图②沿DF折叠得到图③,若在图③中,∠FEM=24°,则∠EFC为108°.【思路引导】利用折叠,得到全等图形,会得到相等的角、相等的边这一性质推理即可.【完整解答】解:第一次折叠后,∵∠B′EF=∠BEF,∠FEM=24°,∴∠B′EM=2∠FEM=48°,∵AB′∥DF,∴∠B′EM=∠FMB=48°,∠B′EF=∠EFM=24°,第二次折叠后,∵BM∥CF,∴∠BMF=∠FMB″=48°,∠BMF+∠MFC=180°,∴∠MFC=180°﹣48°=132°,∵∠MFC=∠EFM+EFC,∴∠EFC=132°﹣24°=108°.故答案为:108°.15.(2分)(2021秋•嘉鱼县期末)如图,∠1+∠2+∠3+∠4+∠5+∠6=360度.【思路引导】分析图形,根据“三角形的外角等于与它不相邻的两个内角和”可知能把∠1,∠2,∠3,∠4,∠5,∠6全部转化到∠1,∠6所在的四边形中,利用四边形内角和为360度可得答案.【完整解答】解:如图所示,∵∠2+∠4=∠7,∠3+∠5=∠8,又∵∠1+∠6+∠7+∠8=360°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°,故答案为:360.16.(2分)(2021秋•德城区期末)如图,在四边形ABCD中,∠ABC=∠ADC=90°,∠ABD=68°,则∠CAD的度数是22°.【思路引导】通过证明点A,点B,点C,点D四点共圆,可得∠ABD=∠ACD=72°,由直角三角形的性质可求解.【完整解答】解:∵∠ABC=∠ADC=90°,∴点A,点B,点C,点D四点共圆,∴∠ABD=∠ACD=68°,∴∠CAD=90°﹣∠ACD=22°,故答案为:22°.17.(2分)(2022•岳池县模拟)如图,∠1,∠2,∠3是五边形ABCDE的3个外角,若∠A+∠B=240°,则∠1+∠2+∠3=240°.【思路引导】延长EA、AB构造外角∠4、∠5,根据一个顶点上的外角和内角的关系与多边形的外角和,计算得结论.【完整解答】解:如图,延长EA、AB.∵∠EAB+∠4+∠ABC+∠5=360°,又∵∠EAB+∠ABC=240°,∴∠4+∠5=120°.∵∠1+∠2+∠3+∠4+∠5=360°,∴∠1+∠2+∠3=240°.故答案为:240°.18.(2分)(2021秋•垦利区期末)如图所示,∠1+∠2+∠3+∠4+∠5+∠6=360°.【思路引导】根据“三角形的外角等于与它不相邻的两个内角和”把∠1,∠2,∠3,∠4,∠5,∠6全部转化到∠2,∠3所在的四边形中,利用四边形内角和为360度可得答案.【完整解答】解:如图,∵∠1+∠5=∠7,∠4+∠6=∠8,又∵∠2+∠3+∠7+∠8=360°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.故答案为:360°.19.(2分)(2022•顺义区二模)一个正多边形的内角和为720°,则这个正多边形的每一个外角等于60°.【思路引导】首先设这个正多边形的边数为n,根据多边形的内角和公式可得180(n﹣2)=720,继而可求得答案.【完整解答】解:设这个正多边形的边数为n,∵一个正多边形的内角和为720°,∴180(n﹣2)=720,解得:n=6,∴这个正多边形的每一个外角是:360°÷6=60°.故答案为:60°.20.(2分)(2022春•茌平区期末)如图所示,分别以n边形顶角顶点为圆心,以2cm长为半径画圆,则圆中阴影部分面积之和为4πcm2.【思路引导】由于多边形的外角和为360°,则所有阴影的扇形的圆心角的和为360度,故阴影部分的面积=π×22=4π.【完整解答】解:∵多边形的外角和为360°,∴SA1+SA2+…+SAn=S圆=π×22=π(cm2).故答案为4π.三.解答题(共7小题,满分50分)21.(6分)(2022春•思明区校级期中)如图1,在五边形ABCDE中,AE∥BC,∠A=∠C.(1)猜想AB与CD之间的位置关系,并说明理由;(2)如图2,延长DE至F,连接BE,若∠1=∠3,∠AEF=2∠2,∠AED=2∠C﹣140°,求∠C的度数.【思路引导】(1)AB与CD平行,理由为:由AE∥BC,根据两直线平行同旁内角互补,可得:∠A+∠B=180°,然后由∠A=∠C,根据等量代换可得:∠C+∠B=180°,然后根据同旁内角互补两直线平行,即可证明AB与CD平行;(2)由AE∥BC,根据两直线平行,内错角相等,同旁内角互补,可得:∠2=∠3,∠A+∠ABC=180°,由∠1=∠3,根据等量代换可得:∠1=∠2=∠3,∠ABC=2∠2,由∠AEF=2∠2,根据等量代换可得:∠A+∠ABC=∠A+2∠2=∠A+∠AEF=180°,然后根据平角的定义可得:∠AEF+∠AED=180°,进而可得∠A=∠AED,由∠A=∠C,可得:∠AED=∠C,结合∠AED=2∠C﹣140°计算可求解∠C的度数.【完整解答】解:(1)猜想:AB∥CD,理由:∵AE∥BC,∴∠A+∠B=180°,∵∠A=∠C,∴∠C+∠B=180°,∴AB∥CD;(2)∵AE∥BC,∴∠2=∠3,∠A+∠ABC=180°,∵∠1=∠3,∴∠1=∠2=∠3,∠ABC=2∠2,∵∠AEF=2∠2,∴∠A+∠ABC=∠A+2∠2=∠A+∠AEF=180°,∵∠AEF+∠AED=180°,∴∠A=∠AED,∵∠A=∠C,∴∠AED=∠C,∵∠AED=2∠C﹣140°,∴∠C=2∠C﹣140°,解得:∠C=140°.22.(6分)(2021春•永嘉县校级期中)如图1我们称之为“8字形”,请直接写出∠A,∠B,∠C,∠D之间的数量关系:∠A+∠B=∠C+∠D;(2)如图2,∠1+∠2+∠3+∠4+∠5+∠6+∠7=540度(3)如图3所示,已知∠1=∠2,∠3=∠4,猜想∠B,∠P,∠D之间的数量关系,并证明.【思路引导】(1)根据三角形内角和定理即可得出∠A+∠D=∠C+∠B;(2)∠6,∠7的和与∠8,∠9的和相等.由多边形的内角和得出答案即可;(3)先根据“8字形”中的角的规律,可得∠1+∠D=∠P+∠3①,∠4+∠B=∠2+∠P②,由已知条件∠1=∠2,∠3=∠4,将①+②,可得2∠P=∠D+∠B.【完整解答】解:(1)如图1,∵∠A+∠B+∠AOB=∠C+∠D+∠COD=180°,∠AOB=∠DOC,∴∠A+∠B=∠C+∠D;故答案为:∠A+∠B=∠C+∠D;(2)∵∠6,∠7的和与∠8,∠9的和相等,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=∠1+∠2+∠3+∠4+∠5+∠8+∠9=540°.(3)∠1+∠D=∠P+∠3①,∠4+∠B=∠2+∠P②,如图3,∵∠1=∠2,∠3=∠4,①+②得:∠1+∠D+∠4+∠B=∠P+∠3+∠2+∠P,即2∠P=∠D+∠B.23.(8分)(2022春•宜兴市校级月考)如图,四边形ABCD,BE、DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β.(1)如图1,若α+β=120°,求∠MBC+∠NDC的度数;(2)如图1,试说明:∠MBC+∠NDC的度数与α,β的数量关系.(3)如图1,若BE与DF相交于点G,∠BGD=30°,请写出α、β所满足的等量关系式;(4)如图2,若α=β,判断BE、DF的位置关系,并说明理由.【思路引导】(1)∠ABC+∠ADC=360°﹣(α+β),再根据∠MBC+∠NDC=180°﹣∠ABC+180°﹣∠ADC可得答案;(2)由(1)的思路可得结论;(3)连接BD,由(1)知∠MBC+∠NDC=α+β,利用角平分线和外角的性质可得(α+β)+180°﹣β+30°=180°,整理可得结论;(4)由(1)知,∠MBC+∠NDC=α+β,利用角平分线和外角的性质则有∠CBE+β﹣∠DHB=(β+β)=β,∠CBE=∠DHB,进而可得结论.【完整解答】解:(1)由四边形内角和得,∠ABC+∠ADC=360°﹣(α+β),∴∠MBC+∠NDC=180°﹣∠ABC+180°﹣∠ADC=360°﹣(∠ABC+∠ADC)=360°﹣360°+α+β=α+β=120°;(2)∠MBC+∠NDC=α+β,理由:由四边形内角和得,∠ABC+∠ADC=360°﹣(α+β),∴∠MBC+∠NDC=180°﹣∠ABC+180°﹣∠ADC=360°﹣(∠ABC+∠ADC)=360°﹣360°+α+β=α+β;(3)如图1,连接BD,由(2)得,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBG=∠MBC,∠CDG=∠NDC,∴∠CBG+∠CDG=∠MBC+∠NDC=(∠MBC+∠NDC)=(α+β),在△BCD中,∠BDC+∠CBD=180°﹣∠BCD=180°﹣β,在△BDG中,∠GBD+∠GDB+∠BGD=180°,∴∠CBG+∠CBD+∠CDG+∠BDC+∠BGD=180°,∴(∠CBG+∠CDG)+(∠BDC+∠CBD)+∠BGD=180°,∴(α+β)+180°﹣β+30°=180°,∴β﹣α=60°;(4)平行,理由:如图2,延长BC交DF于H,由(1)得,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBE=∠MBC,∠CDH=∠NDC,∴∠CBE+∠CDH=∠MBC+∠NDC=(∠MBC+∠NDC)=(α+β),∵∠BCD=∠CDH+∠DHB,∴∠CDH=∠BCD﹣∠DHB=β﹣∠DHB,∴∠CBE+β﹣∠DHB=(α+β),∵α=β,∴∠CBE+β﹣∠DHB=(β+β)=β,∴∠CBE=∠DHB,∴BE∥DF.24.(6分)(2022•南京模拟)把20根长度相等的木条分成三部分,分别用其中两部分木条首尾相连做成两个边数相等的多边形,再用剩下的一部分木条首尾相连做成一个多边形.(1)求这三个多边形的内角和;(2)如果前两个多边形的边数和大于后一个多边形的边数,求这三个多边形的边数.【思路引导】(1)根据多边形内角和公式求解即可;(2)根据题意列出不等式组求解即可.【完整解答】解:设两个边数相等的多边形是m边形,另一个多边形是n边形(m≥3,n≥3,m,n为正整数),(1)根据题意得,有2m+n=20,则这三个多边形的内角和为2×(m﹣2)×180°+(n﹣2)×180°=(2m+n﹣6)×180°=14×180°=2520°,(2)根据题意得,,∴n<10,∵m≥3,n≥3,m,n为正整数,∴m=6,n=8;m=7,n=6;m=8,n=4,答:这三个多边形的边数是6、6、8或7、7、6或8、8、4.25.(8分)(2022春•无锡期中)阅读并解决下列问题:(1)如图①,△ABC中,∠A=60°,∠ABC、∠ACB的平分线交于点D,则∠BDC=120°.(2)如图②,五边形ABCDE中,AE∥BC,EF平分∠AED,CF平分∠BCD,若∠EDC=72°,求∠EFC的度数.【思路引导】(1)首先根据三角形的内角和定理,求出∠ABC、∠ACB的度数和是多少;然后根据∠ABC、∠ACB的平分线交于点D,求出∠DBC、∠DCB的度数和是多少;最后在△BCD中,根据三角形的内角和定理,求出∠BDC的度数是多少即可.(2)首先根据AE∥BC,可得∠A+∠B=180°,再用五边形的内角和减去180°,求出∠AED、∠EDC、∠BCD的度数和;然后根据∠EDC=70°,求出∠AED、∠EDC的度数和;最后根据EF平分∠AED,CF平分∠BCD,求出∠FED、∠FCD的度数和;再用四边形CDEF的内角和减去∠FED、∠FCD、∠EDC的度数和,求出∠EFC的度数.【完整解答】解:(1)∵∠A=60°,∴∠ABC+∠ACB=180°﹣60°=120°,∵∠ABC、∠ACB的平分线交于点D,∴∠ABD=∠DBC,∠DCB=∠ACD,∴∠DBC+∠DCB=120°÷2=60°,∴∠BDC=180°﹣60°=120°,故答案为:120°;(2)∵AE∥BC,∴∠A+∠B=180°,∵五边形ABCDE的内角和是540°,∴∠AED+∠EDC+∠BCD=540°﹣180°=360°,∵∠EDC=72°,∴∠AED+∠BCD=360°﹣72°=288°,∵EF平分∠AED,CF平分∠BCD,∴∠FED+∠FCD=288°÷2=144°,∴∠EFC=360°﹣(∠FED+∠FCD+∠EDC)=360°﹣(144°+72°)=144°26.(8分)(2022春•江都区期中)如图,将△ABC纸片沿DE折叠,使点A落在四边形BCDE内点A'的位置,(1)探索∠A与∠1+∠2之间的数量关系,并说明理由.(2)如果点A落在四边形BCDE外点A''的位置,∠A与∠1、∠2之间的数量关系有何变化,请说明理由.【思路引导】(1)根据折叠性质得出∠AED=∠A′ED,∠ADE=∠A′DE,根据三角形内角和定理得出∠AED+∠ADE=180°﹣∠A,代入∠1+∠2=180°+180°﹣2(∠AED+∠ADE)求出即可;(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 环境政策与西方政治制度的相互影响试题及答案
- 网络工程师职业考点与2025年试题答案更新
- 软件设计师创新思路试题及答案
- 公共政策与企业环境的互动试题及答案
- 数字孪生在城市文化遗产数字化保护中的应用策略研究报告
- 软件设计师考试资源整合策略试题及答案
- 信息系统项目管理的经验分享试题及答案
- 安全岗位考核试题及答案
- 网络项目管理软件使用试题及答案
- 文化遗产数字化保护与利用中的数字文化遗产保护与文化遗产地保护国际合作报告
- DB32/T 4622.4-2023采供血过程风险管理第4部分:血液成分制备和供应风险控制规范
- 2025年供应链管理专业考试试题及答案
- 2025山东能源集团营销贸易限公司招聘机关部分业务人员31人易考易错模拟试题(共500题)试卷后附参考答案
- 2024年漳州市招聘中小学幼儿园教师真题
- 2025年道德与法治课程考试试卷及答案
- 2025河南中考:政治必背知识点
- 互联网公司网络安全工程师入职培训
- 2025年中南出版传媒集团湖南教育出版社分公司招聘笔试参考题库含答案解析
- 广东惠州事业单位招聘医疗卫生岗考试模拟题带答案2025年
- 车辆抵顶合同协议
- 2025春 新人教版美术小学一年级下册致敬平凡
评论
0/150
提交评论