




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届重庆市主城四区高二数学第一学期期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.等比数列的各项均为正数,且,则=()A.8 B.16C.32 D.642.2019年末,武汉出现新型冠状病毒肺炎(COVID—19)疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,所以目前没有特异治疗方法,防控难度很大武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从2月7日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和与确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人在排查期间,一户6口之家被确认为“与确诊患者的密切接触者”,这种情况下医护人员要对其家庭成员随机地逐一进行“核糖核酸”检测,若出现阳性,则该家庭为“感染高危户”.设该家庭每个成员检测呈阳性的概率均为p(0<p<1)且相互独立,该家庭至少检测了5个人才能确定为“感染高危户”的概率为f(p),当p=p0时,f(p)最大,则p0=()A. B.C. D.3.函数的导数为()A.B.CD.4.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待18秒才出现绿灯的概率为()A B.C. D.5.设圆:和圆:交于A,B两点,则线段AB所在直线的方程为()A. B.C. D.6.从全体三位正整数中任取一数,则此数以2为底的对数也是正整数的概率为()A. B.C. D.以上全不对7.设为实数,则曲线:不可能是()A.抛物线 B.双曲线C.圆 D.椭圆8.已知等比数列中,,则由此数列的奇数项所组成的新数列的前项和为()A. B.C. D.9.已知函数为偶函数,则在处的切线方程为()A. B.C. D.10.若圆与圆相切,则实数a的值为()A.或0 B.0C. D.或11.已知数列的通项公式为.若数列的前n项和为,则取得最大值时n的值为()A.2 B.3C.4 D.512.设抛物线的焦点为,点为抛物线上一点,点坐标为,则的最小值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若无论实数取何值,直线与圆恒有两个公共点,则实数的取值范围为___________.14.设椭圆标准方程为,则该椭圆的离心率为______15.已知曲线的方程是,给出下列四个结论:①曲线C恰好经过4个整点(即横、纵坐标均为整数的点);②曲线有4条对称轴;③曲线上任意一点到原点的距离都不小于1;④曲线所围成图形的面积大于4;其中,所有正确结论的序号是_____16.同时掷两枚骰子,则点数和为7的概率是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知为坐标原点,椭圆:的左、右焦点分别为,,右顶点为,上顶点为,若,,成等比数列,椭圆上的点到焦点的距离的最大值为求椭圆的标准方程;过该椭圆的右焦点作两条互相垂直的弦与,求的取值范围18.(12分)已知数列的前项和为,且(1)求数列的通项公式;(2)若,求数列的前项和.19.(12分)如下图,已知点是离心率为的椭圆:上的一点,斜率为的直线交椭圆于、两点,且、、三点互不重合(1)求椭圆的方程;(2)求证:直线,的斜率之和为定值20.(12分)2021年国务院政府工作报告中指出,扎实做好碳达峰、碳中和各项工作,制定2030年前碳排放达峰行动方案,优化产业结构和能源结构.汽车行业是碳排放量比较大的行业之一,若现对CO2排放量超过130g/km的MI型新车进行惩罚(视为排放量超标),某检测单位对甲、乙两类MI型品牌的新车各抽取了5辆进行CO2排放量检测,记录如下(单位:g/km):甲80110120140150乙100120xy160经测算发现,乙类品牌车CO2排放量的均值为乙=120g/km.(1)求甲类品牌汽车的排放量的平均值及方差;(2)若乙类品牌汽车比甲类品牌汽车CO2的排放量稳定性好,求x的取值范围.21.(12分)在平面直角坐标系中,圆C:,直线l:(1)若直线l与圆C相切于点N,求切点N的坐标;(2)若,直线l上有且仅有一点A满足:过点A作圆C的两条切线AP、AQ,切点分别为P,Q,且使得四边形APCQ为正方形,求m的值22.(10分)在棱长为4的正方体中,点分别在线段上,点在线段延长线上,,,连接交线段于点.(1)求证平面;(2)求异面直线所成角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由等比数列的下标和性质即可求得答案.【详解】由题意,,所以.故选:B.2、A【解析】解设事件A为:检测了5人确定为“感染高危户”,设事件B为:检测了6人确定为“感染高危户”,则,再利用基本不等式法求解.【详解】解:设事件A为:检测了5人确定为“感染高危户”,设事件B为:检测了6人确定为“感染高危户”,则,,所以,令,则,,当且仅当,即时,等号成立,即,故选:A3、B【解析】由导数运算法则可求出.【详解】,.故选:B.4、B【解析】由几何概型公式求解即可.【详解】红灯持续时间为40秒,则至少需要等待18秒才出现绿灯的概率为,故选:B5、A【解析】将两圆的方程相减,即可求两圆相交弦所在直线的方程.【详解】设,因为圆:①和圆:②交于A,B两点所以由①-②得:,即,故坐标满足方程,又过AB的直线唯一确定,即直线的方程为.故选:A6、B【解析】利用古典概型的概率求法求解.【详解】从全体三位正整数中任取一数共有900种取法,以2为底的对数也是正整数的三位数有,共3个,所以以此数以2为底的对数也是正整数的概率为,故选:B7、A【解析】根据圆的方程、椭圆的方程、双曲线的方程和抛物线的方程特征即可判断.【详解】解:对A:因为曲线C的方程中都是二次项,所以根据抛物线标准方程的特征曲线C不可能是抛物线,故选项A正确;对B:当时,曲线C为双曲线,故选项B错误;对C:当时,曲线C为圆,故选项C错误;对D:当且时,曲线C为椭圆,故选项D错误;故选:A.8、B【解析】确实新数列是等比数列及公比、首项后,由等比数列前项和公式计算,【详解】由题意,新数列为,所以,,前项和为故选:B.9、A【解析】根据函数是偶函数可得,可求出,求出函数在处的导数值即为切线斜率,即可求出切线方程.【详解】函数为偶函数,,即,解得,,则,,且,切线方程为,整理得.故选:A.【点睛】本题考查函数奇偶性的应用,考查利用导数求切线方程,属于基础题.10、D【解析】根据给定条件求出两圆圆心距,再借助两圆相切的充要条件列式计算作答.【详解】圆的圆心,半径,圆的圆心,半径,而,即点不可能在圆内,则两圆必外切,于是得,即,解得,所以实数a的值为或.故选:D11、C【解析】根据单调性分析出数列的正数项有哪些即可求解.【详解】由条件有,当时,,即;当时,,即.即,所以取得最大值时n的值为.故选:C12、B【解析】设点P在准线上的射影为D,则根据抛物线的定义可知|PF|=|PD|,进而把问题转化为求|PM|+|PD|的最小值,即可求解【详解】解:由题意,设点P在准线上的射影为D,则根据抛物线的定义可知|PF|=|PD|,所以要求|PM|+|PF|的最小值,即求|PM|+|PD|的最小值,当D,P,M三点共线时,|PM|+|PD|取得最小值为故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据点到直线的距离公式得到,根据,解不等式得到答案.【详解】依题意有圆心到直线的距离,即,又无论取何值,,故,故.故答案:14、##【解析】求出、的值,即可求得椭圆的离心率.【详解】在椭圆中,,,则,因此,该椭圆的离心率为.故答案为:.15、②③④【解析】根据曲线方程作出曲线,即可根据题意判断各结论的真假【详解】曲线的简图如下:根据图象以及方程可知,曲线C恰好经过9个整点,它们是,,,所以①不正确;由图可知,曲线有4条对称轴,它们分别是轴,轴,直线和,②正确;由图可知,曲线上任意一点到原点的距离都不小于1,③正确;由图可知,曲线所围成图形的面积等于,④正确故答案为:②③④16、【解析】利用古典概型的概率计算公式即得.【详解】依题意,记抛掷两颗骰子向上的点数分别为,,则可得到数组共有组,其中满足的组数共有6组,分别为,,,,,,因此所求的概率等于.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】根据,,成等比数列,椭圆上的点到焦点的距离的最大值为.列出关于、、的方程组,求出、的值,即可得出椭圆的方程;对直线和分两种情况讨论:一种是两条直线与坐标轴垂直,可求出两条弦长度之和;二是当两条直线斜率都存在时,设直线的方程为,将直线方程与椭圆方程联立,列出韦达定理,利用弦长公式可计算出的长度的表达式,然后利用相应的代换可求出的长度表达式,将两线段长度表达式相加,利用函数思想可求出两条弦长的取值范围最后将两种情况的取值范围进行合并即可得出答案【详解】易知,得,则,而,又,得,,因此,椭圆C的标准方程为;当两条直线中有一条斜率为0时,另一条直线的斜率不存在,由题意易得;当两条直线斜率都存在且不为0时,由知,设、,直线MN的方程为,则直线PQ的方程为,将直线方程代入椭圆方程并整理得:,显然,,,,同理得,所以,,令,则,,设,,所以,,所以,,则综合可知,的取值范围是【点睛】本题主要考查待定系数法求椭圆方程及圆锥曲线求范围,属于难题.解决圆锥曲线中的范围问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中范围问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法求解.18、(1)(2)【解析】(1)根据,再结合等比数列的定义,即可求出结果;(2)由(1)可知,再利用错位相减法,即可求出结果.【小问1详解】解:因为,当时,,解得当时,,所以,即.所以数列是首项为2,公比为2的等比数列.故.【小问2详解】解:由(1)知,则,所以①②,①-②得.所以数列的前项和19、(1);(2)证明见解析.【解析】(1)根据离心率为可得,把代入方程可得,又,解方程组即可求得方程;(2)设直线的方程为,整理方程组,求得,及参数的范围,由斜率公式表示出,结合直线方程和韦达定理整理即可得到定值.试题解析:(1)由题意,可得,代入得,又,解得,,所以椭圆的方程为.(2)证明:设直线的方程为,又,,三点不重合,∴,设,,由得,所以,解得,,①,②设直线,的斜率分别为,,则(),分别将①②式代入(),得,所以,即直线,的斜率之和为定值考点:椭圆的标准方程及直线与椭圆的位置关系.【方法点睛】本题主要考查了椭圆的标准方程及直线与椭圆的位置关系,考查了方程的思想和考试与运算能力,属于中档题.求椭圆方程通常用待定系数法,注意隐含条件;研究圆锥曲线中的定值问题,通常根据交点与方程组解得对应性,设而不解,表示出待求定值的表达式,利用韦达定理代入整理,消去参数即可得到定值.20、(1),600(2)【解析】用平均数及方差公式计算即可.用平均值得、之间的关系,再由,解不等式可得解.【小问1详解】甲类品牌汽车的排放量的平均值,甲类品牌汽车的排放量的方差.【小问2详解】由题意知乙类品牌汽车的排放量的平均值=120(g/km),得x+y=220,故y=220-x,所以乙类品牌汽车的排放量的方差,因为乙类品牌汽车比甲类品牌汽车的排放量稳定性好,所以,解得.21、(1)或(2)3.【解析】(1)设切点坐标,由切点和圆心连线与切线垂直以及切点在圆上建立关系式,求解切点坐标即可;(2)由圆的方程可得圆心坐标及半径,由APCQ为正方形,可得|AC|=可得圆心到直线的距离为,可得m的值【小问1详解】解:设切点为,则有,解得:或x0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年婚前财产公证及婚姻家庭财产保全与管理协议
- 2025年度全新员工离职保密协议及离职后市场竞业限制合同
- 2025年度影视作品赞助协议书模板下载
- 2025年度安全风险评估厂房租赁安全生产管理合同
- 2025年度特殊行业安全保卫人工成本协议书
- 2025年度公司股份增发与投资者权益保护协议书
- 2025年度公司股东内部关于研发创新成果共享的协议书
- 2025年度XX金融控股集团股东退股及风险管理协议
- 2025年度拖欠工资解除劳动合同赔偿计算规范范文
- 2025年贵州文化旅游职业学院单招职业技能测试题库参考答案
- 山地光伏设计方案
- 2022广州美术学院附属中学(广美附中)入学招生测试卷语文
- 北师大版(2019)选择性必修第三册Unit 7 Careers Topic Talk 导学案
- 春节复工复产安全教育培训
- 2024年广西公务员考试行测真题及答案解析
- 护理质量改进项目
- 《矿产地质勘查规范 花岗伟晶岩型高纯石英原料》(征求意见稿)
- 关尹子教射课件
- 《合同能源管理介绍》课件
- 养殖骆驼的可行性方案
- 汽车运用与维修专业(新能源方向)调研报告
评论
0/150
提交评论