版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省红河市2025届高一数学第一学期期末复习检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知命题:角为第二或第三象限角,命题:,命题是命题的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件2.已知幂函数的图象过点,则下列说法中正确的是()A.的定义域为 B.的值域为C.为偶函数 D.为减函数3.将函数的图象先向右平移个单位长度,再向下平移1个单位长度,所得图象对应的函数解析式是()A. B.C. D.4.函数的定义域为,值域为,则的取值范围是()A. B.C. D.5.某甲、乙两人练习跳绳,每人练习10组,每组40个.每组计数的茎叶图如下图,则下面结论中错误的一个是()A.甲比乙的极差大B.乙的中位数是18C.甲的平均数比乙的大D.乙的众数是216.下列函数中,满足对定义域内任意实数,恒有的函数的个数为()①②③④A.1个 B.2个C.3个 D.4个7.设a>0且a≠1,则“函数fx=ax在R上是减函数”是“函数gxA.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件8.若,则的值为A.0 B.1C.-1 D.29.函数的定义域为,且为奇函数,当时,,则函数的所有零点之和是()A.2 B.4C.6 D.810.已知函数,若存在四个互不相等的实数根,则实数的取值范围为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设,且,则的取值范围是________.12.已知函数的零点为,不等式的最小整数解为,则__________13.函数是幂函数,且当时,是减函数,则实数=_______14.正三棱锥中,,则二面角的大小为__________15.已知幂函数在上单调递减,则______16.已知关于不等式的解集为,则的最小值是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,(1)求的值;(2)求的值.18.已知是定义在上的函数,满足.(1)若,求;(2)求证:的周期为4;(3)当时,,求在时的解析式.19.已知方程(1)若此方程表示圆,求的取值范围;(2)若此方程表示圆,且点在圆上,求过点的圆的切线方程20.已知函数(1)求的最小正周期;(2)当时,求的最小值以及取得最小值时的集合21.已知函数.(1)求函数的单调区间;(2)若函数在有且仅有两个零点,求实数取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】利用切化弦判断充分性,根据第四象限的角判断必要性.【详解】当角为第二象限角时,,所以,当角为第三象限角时,,所以,所以命题是命题的不充分条件.当时,显然,当角可以为第四象限角,命题是命题的不必要条件.所以命题是命题的既不充分也不必要条件.故选:D2、C【解析】首先求出幂函数解析式,再根据幂函数的性质一一判断即可.【详解】解:因为幂函数的图象过点,所以,所以,所以,定义域为,且,即为偶函数,因为,所以,所以,故A错误,B错误,C正确,又在上单调递减,根据偶函数的对称性可得在上单调递增,故D错误;故选:C3、A【解析】利用三角函数的伸缩平移变换规律求解变换后的解析式,再根据二倍角公式化简.【详解】将函数的图象先向右平移个单位长度,得函数解析式为,再将函数向下平移1个单位长度,得函数解析式为.故选:A4、B【解析】观察在上的图象,从而得到的取值范围.【详解】解:观察在上的图象,当时,或,当时,,∴的最小值为:,的最大值为:,∴的取值范围是故选:B【点睛】本题考查余弦函数的定义域和值域,余弦函数的图象,考查数形结合思想,属基础题5、B【解析】通过茎叶图分别找出甲、乙的最大值以及最小值求出极差即可判断A;找出乙中间的两位数即可判断B;分别求出甲、乙的平均数判断C;观察乙中数据即可判断D;【详解】对于A,由茎叶图可知,甲的极差为,乙的极差为,故A正确;对于B,乙中间两位数为,故中位数为,故B错误;对于C,甲的平均数为,乙的平均数为,故C正确;对于D,乙组数据中出现次数最多为21,故D正确;故选:B【点睛】本题考查了由茎叶图估计样本数据的数字特征,属于基础题.6、A【解析】根据因为函数满足对定义域内任意实数,恒有,可得函数的图象是“下凸”,然后由函数图象判断.【详解】因为函数满足对定义域内任意实数,恒有,所以函数的图象是“下凸”,分别作出函数①②③④的图象,由图象知,满足条件的函数有③一个,故选:A7、A【解析】函数f(x)=ax在R上是减函数,根据指数函数的单调性得出0<a<1;函数g(x)=(4-a)⋅x在R上是增函数,得出0<a<4且【详解】函数f(x)=ax在R上是减函数,则函数g(x)=(4-a)⋅x在R上是增函数,则4-a>0,而a>0且a≠1,解得:0<a<4且a≠1,故“函数fx=ax在R上是减函数”是“函数gx故选:A.8、A【解析】由题意得a不等于零,或,所以或,即的值为0,选A.9、B【解析】根据题意可知图象关于点中心对称,由的解析式求出时的零点,根据对称性即可求出时的零点,即可求解.【详解】因为为奇函数,所以函数的图象关于点中心对称,将的图象向右平移个单位可得的图象,所以图象关于点中心对称,当时,,令解得:或,因为函数图象关于点中心对称,则当时,有两解,为或,所以函数的所有零点之和是,故选:B第II卷(非选择题10、D【解析】令,则,由题意,有两个不同的解,有两个不相等的实根,由图可知,得或,所以和各有两个解当有两个解时,则,当有两个解时,则或,综上,的取值范围是,故选D点睛:本题考查函数性质的应用.本题为嵌套函数的应用,一般的,我们应用整体思想解决问题,所以令,则,由题意,有两个不同的解,有两个不相等的实根,再结合图象逐步分析,解得答案二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由题意得,,又因为,则的取值范围是12、8【解析】利用单调性和零点存在定理可知,由此确定的范围,进而得到.【详解】函数为上的增函数,,,函数的零点满足,,的最小整数解故答案为:.13、-1【解析】根据幂函数的定义,令m2﹣m﹣1=1,求出m的值,再判断m是否满足幂函数当x∈(0,+∞)时为减函数即可【详解】解:∵幂函数,∴m2﹣m﹣1=1,解得m=2,或m=﹣1;又x∈(0,+∞)时,f(x)为减函数,∴当m=2时,m2+m﹣3=3,幂函数为y=x3,不满足题意;当m=﹣1时,m2+m﹣3=0,幂函数为y=x﹣3,满足题意;综上,m=﹣1,故答案为﹣1【点睛】本题考查了幂函数的定义与图像性质的应用问题,解题的关键是求出符合题意的m值14、【解析】取中点为O,连接VO,BO在正三棱锥中,因为,所以,所以=,所以15、##【解析】依题意得且,即可求出,从而得到函数解析式,再代入求值即可;【详解】解:由题意得且,则,,故故答案为:16、【解析】由题知,进而根据基本不等式求解即可.【详解】解:因为关于的不等式的解集为,所以是方程的实数根,所以,因为,所以,当且仅当,即时等号成立,所以的最小值是故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)化简得到原式,代入数据得到答案.(2)变换得到,代入数据得到答案.【详解】(1).(2).【点睛】本题考查了利用齐次式计算函数值,变换是解题的关键.18、(1)(2)证明见解析(3)【解析】(1)先求出,然后再求即可;(2)利用函数周期性的定义,即可证明;(3)根据以及题设条件,先求出,再根据,即可解出在时的解析式【小问1详解】∵,∴.【小问2详解】∵对任意的,满足∴,∴函数是以4为周期的周期函数.【小问3详解】设,则,∵当时,,∴当时,,又∵,∴∴.19、(1)或;(2)或【解析】(1)若此方程表示圆,则,即可得解;(2)代入点得,从而得圆心半径,由已知得所求圆的切线斜率存在,设为,切线方程为:,由圆心到直线距离等于半径列方程求解即可.试题解析:(1)若此方程表示圆,则或(2)由点在圆,代入圆的方程得,此时圆心,半径,由已知得所求圆的切线斜率存在,设为,切线方程为:或,∴切线方程为:或.20、(1),(2),时【解析】(1)先利用同角平方关系及二倍角公式,辅助角公式进行化简,即可求解;(2)由的范围先求出的范围,结合余弦函数的性质即可求解【详解】解:(1),,,,故的最小正
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山东省东营消防管道安装合同2024
- 2024年沙漠沙子销售合同3篇
- 2024年智慧校园软件系统定制购销与技术支持合同
- 商场2024年度电子商务平台运营合同2篇
- 基于物联网的智能家居系统研发与销售合同2024年度8篇
- 二零二四年度光伏发电项目合作投资合同
- 二零二四年度业绩挂钩协议:人力资源部经理绩效合同2篇
- 2024年度高速公路建设与维护合同
- 2024年汽车清洗设备租赁合同示例3篇
- 2024年汽车销售顾问专属合同5篇
- GB/T 44762-2024氯化镧
- 商场百货陈列培训
- 中华人民共和国文物保护法
- 建筑工程质量通病与预防措施
- 【初中数学】第4章基本平面图形单元达标测试题 2024-2025学年北师大版七年级数学上册
- 2024《整治形式主义为基层减负若干规定》全文课件
- TDT 1083-2023 国土调查数据库更新数据规范
- 中国法律史-第三次平时作业-国开-参考资料
- DZ∕T 0227-2010 地质岩心钻探规程(正式版)
- 2024年社区工作者考试必背1000题题库【含答案】
- 2024城镇燃气用环压式不锈钢管道工程技术规程
评论
0/150
提交评论