版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
28.2解直角三角形(第1课时)第一页,编辑于星期五:十二点二十九分。复习30°、45°、60°角的正弦值、余弦值和正切值如下表:
锐角a三角函数30°45°60°sinacosatana对于sinα与tanα,角度越大,函数值也越大;(带正)对于cosα,角度越大,函数值越小。第二页,编辑于星期五:十二点二十九分。问题:要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角a一般要满足50°≤a≤75°.现有一个长6m的梯子,问:(1)使用这个梯子最高可以安全攀上多高的墙(精确到0.1m)?(2)当梯子底端距离墙面2.4m时,梯子与地面所成的角a等于多少(精确到1°)?这时人是否能够安全使用这个梯子?这样的问题怎么解决第三页,编辑于星期五:十二点二十九分。问题(1)可以归结为:在Rt△ABC中,已知∠A=75°,斜边AB=6,求∠A的对边BC的长.问题(1)当梯子与地面所成的角a为75°时,梯子顶端与地面的距离是使用这个梯子所能攀到的最大高度.因此使用这个梯子能够安全攀到墙面的最大高度约是5.8m所以BC≈6×0.97≈5.8由计算器求得sin75°≈0.97由得ABαC第四页,编辑于星期五:十二点二十九分。对于问题(2),当梯子底端距离墙面2.4m时,求梯子与地面所成的角a的问题,可以归结为:在Rt△ABC中,已知AC=2.4,斜边AB=6,求锐角a的度数由于利用计算器求得a≈66°因此当梯子底墙距离墙面2.4m时,梯子与地面所成的角大约是66°由50°<66°<75°可知,这时使用这个梯子是安全的.ABCα第五页,编辑于星期五:十二点二十九分。在图中的Rt△ABC中,(1)根据∠A=75°,斜边AB=6,你能求出这个直角三角形的其他元素吗?探究ABCα能6=75°第六页,编辑于星期五:十二点二十九分。在图中的Rt△ABC中,(2)根据AC=2.4,斜边AB=6,你能求出这个直角三角形的其他元素吗?探究ABCα能62.4第七页,编辑于星期五:十二点二十九分。事实上,在直角三角形的六个元素中,除直角外,如果再知道两个元素(其中至少有一个是边),这个三角形就可以确定下来,这样就可以由已知的两个元素求出其余的三个元素.ABabcC解直角三角形:在直角三角形中,由已知元素求未知元素的过程.在解直角三角形的过程中,一般要用到下面一些关系:解直角三角形第八页,编辑于星期五:十二点二十九分。(2)两锐角之间的关系∠A+∠B=90°(3)边角之间的关系(1)三边之间的关系(勾股定理)ABabcC在解直角三角形的过程中,一般要用到下面一些关系:第九页,编辑于星期五:十二点二十九分。例1如图,在Rt△ABC中,∠C=90°,解这个直角三角形解:ABC第十页,编辑于星期五:十二点二十九分。例2如图,在Rt△ABC中,∠B=35°,b=20,解这个直角三角形(精确到0.1)解:∠A=90°-∠B=90°-35°=55°ABCabc2035°你还有其他方法求出c吗?第十一页,编辑于星期五:十二点二十九分。例3如图,在Rt△ABC中,∠C=90°,AC=6,∠BAC的平分线,解这个直角三角形。DABC6解:因为AD平分∠BAC第十二页,编辑于星期五:十二点二十九分。在Rt△ABC中,∠C=90°,根据下列条件解直角三角形;(1)a=30,b=20;练习解:根据勾股定理ABCb=20a=30c第十三页,编辑于星期五:十二点二十九分。在Rt△ABC中,∠C=90°,根据下列条件解直角三角形;(2)∠B=72°,c=14.ABCbac=14解:第十四页,编辑于星期五:十二点二十九分。
解决有关比萨斜塔倾斜的问题.设塔顶中心点为B,塔身中心线与垂直中心线的夹角为A,过B点向垂直中心线引垂线,垂足为点C(如图),在Rt△ABC中,∠C=90°,BC=5.2m,AB=54.5m所以∠A≈5°28′可以求出2001年纠偏后塔身中心线与垂直中心线的夹角.你愿意试着计算一下吗?ABCABC第十五页,编辑于星期五:十二点二十九分。解直角三角形∠A+∠B=90°a2+b2=c2三角函数关系式计算器由锐角求三角函数值由三角函数值求锐角
归纳小结解直角三角形:由已知元素求未知元素的过程直角三角形中,AB∠A的对边aC∠A的邻边b┌斜边c第十六页,编辑于星期五:十二点二十九分。例4:2008年10月15日“神舟”7号载人航天飞船发射成功.当飞船完成变轨后,就在离地球表面350km的圆形轨道上运行.如图,当飞船运行到地球表面上P点的正上方时,从飞船上最远能直接看到地球上的点在什么位置?这样的最远点与P点的距离是多少?(地球半径约为6400km,结果精确到0.1km)
分析:从飞船上能最远直接看到的地球上的点,应是视线与地球相切时的切点.·OQFPα如图,⊙O表示地球,点F是飞船的位置,FQ是⊙O的切线,切点Q是从飞船观测地球时的最远点.的长就是地面上P、Q两点间的距离,为计算的长需先求出∠POQ(即a)例题第十七页,编辑于星期五:十二点二十九分。解:在图中,FQ是⊙O的切线,△FOQ是直角三角形.∴PQ的长为当飞船在P点正上方时,从飞船观测地球时的最远点距离P点约2009.6km·OQFPα第十八页,编辑于星期五:十二点二十九分。2.如图,沿AC方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=140°,BD=520m,∠D=50°,那么开挖点E离D多远正好能使A,C,E成一直线(精确到0.1m)50°140°520mABCED∴∠BED=∠ABD-∠D=90°答:开挖点E离点D332.8m正好能使A,C,E成一直线.解:要使A、C、E在同一直线上,则∠ABD是△BDE的一个外角第十九页,编辑
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度租赁合同的租赁物描述与租赁期限
- 2024年度拆除工程安全生产管理合同
- 《铁路通信技术精髓》课件
- 销售技巧系列培训课程课件
- 《铁路车站编组站》课件
- 2024年度企业集体广告宣传合同
- 2024年度电力设计国际标准引进与推广合同
- 2024年度设备购买合同之设备交付与安装
- 2024年度企业质量管理与认证服务合同3篇
- 2024年度奶茶店店铺公共设施使用合同
- 2024年国家公务员考试《行测》真题卷(行政执法)答案和解析
- 消化内科五年发展规划
- 生猪屠宰兽医卫生检验人员理论考试题库及答案
- 医院助理全科医生培训基地自评报告
- 《陆上风电场工程设计概算编制规定及费用标准》(NB-T 31011-2019)
- 幼儿园课件:手机本领大-大班-社会
- 生涯发展报告 (第二版)
- 猎人海力布课本剧剧本
- 九年级英语上册Module4Homealone话题写作实境运用课件新版外研版
- 宣传片验收单.doc
- 过去时歌曲-yesterday-once-morePPT优秀课件
评论
0/150
提交评论