模糊PID控制器的设计与仿真-设计步骤(修改)_第1页
模糊PID控制器的设计与仿真-设计步骤(修改)_第2页
模糊PID控制器的设计与仿真-设计步骤(修改)_第3页
模糊PID控制器的设计与仿真-设计步骤(修改)_第4页
模糊PID控制器的设计与仿真-设计步骤(修改)_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

模糊PID控制器的设计与仿真设计模糊PID控制器时,首先要将精确量转换为模糊量,并且要把转换后的模糊量映射到模糊控制论域当中,这个过程就是精确量模糊化的过程。模糊化的主要功能就是将输入量精确值转换成为一个模糊变量的值,最终形成一个模糊集合。本次设计系统的精确量包括以下变量:变化量e,变化量的变化速率ec还有参数整定过程中的输出量ΔKP,ΔKD,ΔKI,在设计模糊PID的过程中,需要将这些精确量转换成为模糊论域上的模糊值。本系统的误差与误差变化率的模糊论域与基本论域为:E=[-6,-4,-2,0,2,4,6];Ec=[-6,-4,-2,0,2,4,6]。模糊PID控制器的设计选用二维模糊控制器。以给定值的偏差e和偏差变化ec为输入;ΔKP,ΔKD,ΔKI为输出的自适应模糊PID控制器,见图1。图1模糊PID控制器(1)模糊变量选取输入变量E和EC的模糊化将一定范围(基本论域)的输入变量映射到离散区间(论域)需要先验知识来确定输入变量的范围。就本系统而言,设置语言变量取七个,分别为NB,NM,NS,ZO,PS,PM,PB。语言变量及隶属函数根据控制要求,对各个输入,输出变量作如下划定:e,ec论域:{-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}ΔKP,ΔKD,ΔKI论域:{-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}应用模糊合成推理PID参数的整定算法。第k个采样时间的整定为式中为经典PID控制器的初始参数。设置输入变量隶属度函数如图2所示,输出变量隶属度函数如图3所示。图2输入变量隶属度函图3输出变量隶属度函编辑模糊规则库(5)模糊PID控制器仿真利用MATLAB软件中的Simulink仿真环境,可以对模糊PID控制器系统进行模拟仿真实验,来检验设计是否达到要求。针对本次控制器设计,我们设置被控对象为,根据被控对象,设置相应的PID参数为:=6;=3;=2。图5为控制器系统在Simulink中的仿真模型。为了方便与传统PID控制器进行比较,在Simulink仿真环境中作出传统PID控制以便于对模糊PID进行比较。在传统PID控制器中设置相应的PID参数为:=6;=3;=2。图6是传统PID与模糊PID控制器在Simulink中的阶跃仿真波形比较。图5传统PID与模糊PID控制器在Simulink中的仿真模型图6传统PID与模糊PID控制器在Simulink中的阶跃仿真波形比较图6中,黄色线为输入的阶跃信号,紫色为输出的传统PID控制信号,青色为输出的模糊PID控制信号,通过图1-7中传统PID控制方式与模糊PID控制控制曲线的对比结果可以看出,模糊控制的控制性能要明显好于传统的PID控制效果。我们把输入信号变为正弦信号再一次进行传统PID与模糊PID控制器的对比。把图5的输入阶跃信号改为输入正弦信号即可进行正弦信号的跟踪。图7是传统PID与模糊PID控制器在Simulink中的正弦仿真波形比较。图7传统PID与模糊PID控制器在Simulink中的正弦仿真波形比较图7中,黄色线为输入的正弦信号,紫色为输出的传统PID控制信号,青色为输出的模糊PID

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论